## People-Tracking-by-Detection and People-Detection-by-Tracking

Mykhaylo Andriluka, Stefan Roth, Bernt Schiele

Computer Science Department, TU Darmstadt, Germany {andriluka, sroth, schiele}@cs.tu-darmstadt.de

### Objective

We consider a problem of *detection* and *tracking* of people in image sequences. The proposed approach is designed to handle long term occlusions which frequently occur in crowded street scenes.

Main steps of our tracking method are:

- People detection combined with estimation of position of body limbs.
- Reconstruction of poses from detections in several subsequence frames, guided by the learned model of the walking motions.
- Long term association of partial tracks based on individualized appearance model and coarse motion model.



#### Part-based Model for People Detection



Our person detector is based on combination of recent ideas in object detection:

- *Part representation* is used to cope with high complexity of articulation space.
- Appearance of each part is modeled using codebook local features.
- Correlations between positions of different parts are modelled with additional articulation variable.
  - Pictorial structures model [Felzenszwalb & Huttenlocher, IJCV 2005]  $p(L|E) = \sum p(L|a,E)p(a)$



assuming uniform prior

over part locations

 $p(\mathbf{x}^{i}|a, E) \approx c_0 + c_1 \sum_{\mathbf{e}_k} p(\mathbf{x}^{i}|a, \mathbf{e}_k)$ 

• To model the part posterior w.r.t. a single feature we introduce a codebook (just as in the ISM):





Graphical model structure:



# Reconstruction of Poses in Short Sequences



 $E = [E_1, \dots, E_m]$ 

relative limb

angles

- Sequence of m frames:
- Given: Image evidence
- Want: Body positions  $\mathbf{X}^{o*} = [\mathbf{x}_1^{o*}, \dots, \mathbf{x}_m^{o*}]$
- Want: Body configuration  $\mathbf{Y}^* = [\mathbf{y}_1^*, \dots, \mathbf{y}_m^*]$
- Posterior over positions and configurations:

 $p(\mathbf{Y}^*,\mathbf{X}^{o*}|E) \propto p(\mathbf{Y}^*)p(\mathbf{X}^{o*})p(E|\mathbf{Y}^*,\mathbf{X}^{o*})$   $\propto p(\mathbf{Y}^*)p(\mathbf{X}^{o*})\prod_{j=1}^m p(E_j|\mathbf{y}_j^*,\mathbf{x}_j^{o*}).$  dynamical body model (hGPLVM) simple speed likelihood model (prior (Gaussian) (part ISM)

 Model the body dynamics using a hierarchical Gaussian process latent variable model (hGPLVM)
[Lawrence & Moore, ICML 2007]:



# Learning a low-dimensional representation for poses and motions



- Similar to GPDM [Urtasun et al, CVPR 2006]
- ▶ But allows for skipped frames (unequal time intervals)
- ▶ Allows for forward and backward prediction

#### **Tracklet Detection**



### **Obtaining Longer Tracks**



### **Experimental Results**

Our part-based person detector compares favorably to other state-of-the-art approaches while additionally being able to compute estimates of limb positions in the image.





# **Comparison of Tracklet and Single-frame Detectors**





| Dataset     | HOG    | 4D-ISM       | single-frame | tracklets       |
|-------------|--------|--------------|--------------|-----------------|
| TUD-        |        |              |              |                 |
| Pedestrians | 0.53 - | 0.28 0.68    | 0.81  0.84   |                 |
| TUD-        |        |              |              |                 |
| Campus      | 0.22   | $0.6 \ 0.71$ | 0.7 0.75     | $ 0.82 \ 0.85 $ |

#### References

- [1] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded scenes. *CVPR* 2005.
- [2] R. Urtasun, D. J. Fleet, and P. Fua. 3D people tracking with Gaussian process dynamical models. *CVPR* 2006.
- [3] N. D. Lawrence and A. J. Moore. Hierarchical Gaussian process latent variable models. *ICML* 2007.
- [4] M. Andriluka, S. Roth and B. Schiele. People-Tracking-by-Detection and People-Detection-by-Tracking. *CVPR* 2008.