Benchmarking automatic bundle adjustment results

Timo Dickscheid

Motivation

- ► In classical photogrammetry, evaluations of bundle adjustments are based on 3D points
- ► Automatic methods yield 2 problems for the evaluation:
 - 1. The choice of points differs for each method
 - 2. Methods often contain random components (i.e. RANSAC)
- ► Following Pennec and Thirion (1995), we conclude:
 - 1. Use the orientation parameters for benchmarking
 - 2. Benchmark against a reference dataset

Overview of the benchmarking approach

Given 2 sets of corresponding orientation parameters in arbitrary coordinate systems $\{{}^a\mathbf{d}_1, {}^a\Sigma_{d_1d_1}\}$ and $\{{}^b\mathbf{d}_2, {}^b\Sigma_{d_2d_2}\}$

(ellipses denote uncertainties)

Derive the following measures:

- ► consistency c of form deviation and internal precision
- ► precision level p related to a reference dataset

For methods with random components also derive

 \blacktriangleright the sample consistency c_s over repeated estimates

Benchmark test: For $2 \le i \le M$ methods, compute all three measures. Require a valid range of c_{s_i} , then report c_i and p_i w. r. t. the same reference dataset.

Parameter transformations

- ► **Gauge problem:** For comparison, the datasets have to be transformed to a well-defined coordinate system *s*.
- ► **Solution:** Derive K- and S-transformations (Baarda, 1967; Molenaar, 1981) for sets of orientation parameters

(1) K-transformation

- Estimate a similarity transformation $K(\mathbf{t}_K, \mathbf{q}_K, \lambda_K)$ between ${}^a\mathbf{d}_1$ and ${}^b\mathbf{d}_2$ that brings ${}^b\mathbf{d}_2$ into system a
- ▶ Update ${}^b\Sigma_{d_2d_2}$ using linear error propagation. Observe from the ellipses that **the gauge still differs!**

(2) S-transformation

► A differential non-stochastic similarity transformation into a well-defined coordinate system *s*

$${}^{s}\mathbf{d}_{in} = \Delta S \circ {}^{a}\mathbf{d}_{in} \qquad i = \{1, 2\}$$

▶ Define weight matrix W_s and use

$$^{s}S = I - A(A^{\mathsf{T}}W_{s}A)^{-1}A^{\mathsf{T}}W_{s}$$

to obtain the S-transformation for both datasets

$${}^{s}\mathbf{d}_{i} = {}^{s}S {}^{a}\mathbf{d}_{i}$$
 ${}^{s}\Sigma_{d_{i}d_{i}} = {}^{s}S {}^{a}\Sigma_{d_{i}d_{i}} {}^{s}S^{\mathsf{T}}$ $i = \{1, 2\}$

- ► The Jacobian A is derived in Dickscheid et al. (2008)
- ► s **d**₁ and s **d**₂ share the same gauge now

Consistency c

- ► Interpretation: Form deviation of corresponding orientation parameters w. r. t. their internal precision.
- c is based on the Mahalanobis distance:

$$c^2=rac{|{}^s\mathbf{d}_1-{}^s\mathbf{d}_2|_{({}^s\Sigma_{d_1d_1}-{}^s\Sigma_{d_2d_2})}}{R}\sim F_{R,\infty}$$

assuming ${}^s\Sigma_{d_1d_1}$, ${}^s\Sigma_{d_2d_2}$ uncorrelated, with R=dof.

Precision level p

- ► Interpretation: Distance between two covariance matrices, based on Förstner and Moonen (1999)
- ▶ p is derived by computing the generalized eigenvalues r^2 from $|{}^s\Sigma_{d_1d_1} r^2|{}^s\Sigma_{d_2d_2}| = 0$ to get

$$p:={\sf e}^{\sqrt{\overline{\ln r^2}}}\geq 1$$

► p is the average quadratic deviation of the ratio of standard deviations from 1.

Sample consistency c_s

- ► Interpretation: Consistency of the variation in orientation parameters w. r. t. their average internal precision
- ► Compute K repeated estimates under identical conditions, i. e. yielding K sets $\{{}^a\mathbf{d}_k, {}^a\Sigma_{d_kd_k}\}$
- ► Again, c_s is derived after applying the K- and S-transformation on all K sets

References

Baarda, W. (1967). *S–Transformations and Criterion Matrices*, Volume 5(1) of *Publications on Geodesy*. Delft, Netherlands: Netherlands Geodetic Commission.

Dickscheid, T., T. Läbe, and W. Förstner (2008). Benchmarking automatic bundle adjustment results. In *Proc. of the 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS)*, Beijing, China.

Förstner, W. and B. Moonen (1999). A metric for covariance matrices. In V. S. S. F. Krumm (Ed.), Quo vadis geodesia . . . ?, Festschrift for Erik W. Grafarend on the occasion of his 60th birthday, TR Department of Geodesy and Geoinformatics, Stuttgart.

Molenaar, M. (1981). A further inquiry into the theory of S-transformations and criterion matrices, Volume 7(1) of Publications on Geodesy. Delft, Netherlands: Netherlands Geodetic Commission. Pennec, X. and J.-P. Thirion (1995). Validation of 3D Registration Methods Based on Points and Frames. In 5th International Conference on Computer Vision, Boston, MA, USA, pp. 557–562.

