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eText is a form of organization of complex knowledge; organizing can be seen as applying
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e Evidence from fMRI and PET studies show brain areas, activated during linguistic tasks, ot N | _
such as natural language processing, are also activated during object recognition [4] The Conceptional Framework [6] Vision Pathways of the Human Brain ~ The proposed Hippocampal model [8]
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eTherefore, in our work, we recently defined a homomorphism between linguistics and human
object representation in order to get able to utilize best way studied and efficiency proven
linguistic concepts, such as grammar, semantics and semiotics for computer vision modeling

e We propose a nhew hybrid approach, inspired from neuropsycological findings of the mammalian
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perceptual grouping into primitives — grammatical inference — self-organizing categorization —
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1ISVM, Neural Networks, Conditional Random Fields, etc., by modeling directly the posterior
’Monte Carlo sampling, Meta heuristics (e.g. EDAs), etc., by modeling both, likelihood and prior
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Table 1: Bigram transitions according to a Monte-Carlo single run sampling
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