Continuous Global Optimization for Image Segmentation and 3D Reconstruction

Maria Klodt

Computer Vision Group, University of Bonn, Germany • klodt@cs.uni-bonn.de

Contributions

This work is based on the continuous global image segmentation method [1]. We present:

- an efficient implementation,
- a comparison to discrete optimization.
- an extension to 3D segmentation and multiview reconstruction.

Fast Minimization via SOR

The convex Mumford-Shah based Image Segmentation functional [1]

$$E(u) = \int_{\Omega} ((I - c_1)^2 - (I - c_2)^2) u(x) dx + \nu \underbrace{\int_{\Omega} |\nabla u| dx}_{\text{TV-Norm}}$$

can be solved via gradient descent. We suggest the more efficient solution via the iterative numerical solving scheme Successive Overrelaxation (SOR). This leads to faster convergence of up to a speed up factor of ~ 5 .

Runtime Comparison (Seconds vs. Image Size)

Convergence Comparison (Energy vs. #Iterations)

Convex TV based 3D Reconstruction

The optimal Surface $S \subseteq V$ is the minimum of the energy functional [3]

$$E(S) = -\int_{R_{obj}^S} \log P_{obj}(x) dx - \int_{R_{bck}^S} \log P_{bck}(x) dx + \nu \int_S \rho dS$$

with the photoconsistency $\rho: V \to [0,1]$. By introducing a binary variable $u: V \to \{0,1\}$ with $u = \mathbf{1}_{R_{obj}^S}$, E can be transformed into the following equivalent formulation

$$E(u) = \int_{V} (\log P_{obj} - \log P_{bck}) u \, dx + \nu \underbrace{\int_{V} \rho |\nabla u| \, dx}_{\text{weighted TV-Norm}}$$

Relaxation to real-valued functions $u:V\to [0,1]$ results in a convex formulation allowing for global optimization. Thresholding the result yields the global optimum of the original problem.

Multiview 3D Reconstruction

Input (3/48)

Reconstructed Object

Reconstructed Object

Comparison for increasing Smoothness

Metrication errors occur at the discrete Optimization via Graph Cuts when the regularization parameter ν is increased. This is not the case for the TV Minimization.

3D Segmentation

(Thanks to IFF, Forschungszentrum Jülich for providing the data.)

Related Work

- Chan, Esedoglu, Nikolova: Algorithms for finding Global Minimizers of Image Segmentation and Denoising Models, SIAM J. Appl. Math. 2006.
- Boykov, Kolmogorov: An experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision, EMMCVPR 2001. Kolev, Brox, Cremers: Robust Variational Segmentation of 3D Objects from Multiple Views, DAGM 2006.
- Kolev, Klodt, Brox, Esedoglu, Cremers: Continuous Global Optimization in Multiview 3D Reconstruction, EMMCVPR 2007.