Towards Robust Matching & Relational Representations of Objects in Images

Christian Schellewald

This research was supported by Marie Curie Intra-European Fellowships within the 6th European Community Framework Programme **Dublin City University, Ireland**

1 Object Recognition

Using a relational graph representation of objects and scenes the object recognition problem turns into a subgraph matching problem.

1.1 Integer Program for Subgraph Matching

The subgraph matching problem can be formulated as the following quadratic integer program:

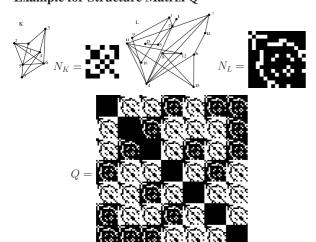
$$\min_{x} w^{\top} x + x^{\top} Q x$$

s.t. $A_{K} x = e_{K}$, $A_{L} x \leq e_{L}$, $x \in \{0, 1\}^{KL}$

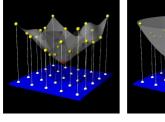
with Structure-matrix

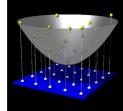
$$Q = N_K \otimes \bar{N}_L + \bar{N}_K \otimes N_L$$

w: vector with similarity values between the nodes


 N_K, N_L : adjacency-matrices

 \bar{N}_L, \bar{N}_K : complementary adjacency matrices $A \otimes B$: Kronecker product of A and B


 $e_K, e_L : e_n = (1, ..., 1)^{\top} \in \mathbb{R}^n$ vector with all elements one


(-) combinatorial problem

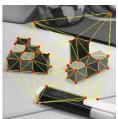
1.2 Example for Structure Matrix Q

1.3 Convex Semidefinite Approximation

Using

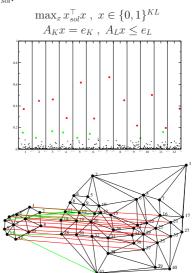
$$w^{\top}x + \alpha x^{\top}Qx = \operatorname{Tr}\left[\underbrace{\begin{pmatrix} 0 & \frac{1}{2}w^{\top} \\ \frac{1}{2}w & \alpha Q \end{pmatrix}}_{\tilde{Q}}\underbrace{\begin{pmatrix} 1 & x^{\top} \\ x & xx^{\top} \end{pmatrix}}_{\tilde{X}}\right]$$

the problem can be approximated by the following semidefinite program (SDP):


$$\begin{aligned} & \min_{x} \operatorname{Tr}\left[\tilde{Q}X\right] \\ & \text{s.t. } \operatorname{Tr}[A_{1}X] = c_{1}, \operatorname{Tr}[A_{2}X] = c_{2}, ..., \operatorname{Tr}[A_{m}X] = c_{m} \\ & X \succ 0 \end{aligned}$$

Tr[Y]: trace of matrix Y

- (+) convex optimisation problem
- (-) no integer solution


2 Real World Example

2.1 Post-processing

Find the best bipartite matching from the solution vector \boldsymbol{x}_{sol} :

3 Extraction of Graph Representations from Images

3.1 Discussion

How to extract robust features suitable for a relational representation of an object ?

How to measure the complexity of a relational structure?