

Susanne Wenzel

Problem

- ► Number and nature of visual categories or object classes are often not initially known
- ► In general there is no fixed set of training images that perfectly describes the classes and is observable in its entirety
- ► Given:
 - ► One example of an object
 - ► Prior knowledge that it is repeatedly present in an image
- ► Goal:
 - Automatically identifying prototypes
 - ► Build up an object class hierarchy guided by user's judgement
 - ► Train classifiers that are capable of incremental learning
 - ► Develop a system, which can improve its capabilities of learning continuously.

Incremental learning scheme

- ▶ Initialize the system with the prototype discovery (1)
 - → Initialize the prototype representations, the class hierarchy and the classifiers

Repeat

- ► Use prototypes to detect probable new instances in new image
- ► Classify probable new instances using current object model (2)
- ► Ask user for the meaning of uncertain classifications
- ► Let the user correct miss-classifications
- ▶ Update prototypes, class hierarchy and classifiers (3)
- Until User satisfied or images exhausted

1 Getting Prototypes

1. Getting clusters

- ► Recursive search procedure to get a set of similar objects
- → Allows to reach all instances bridged by the chaining effect
- ► Clustering based on a reduced similarity graph, cf. (Van Gool et al., 2007)
- ► Instances in one connected component are assumed to belong to the same subclass

2. Supervised labelling of found clusters

- ▶ Identification of the subclasses based on the user's judgement:
- Cluster represents
 - Subclass of the class envisaged,
- ► Another class not yet envisaged or
- ► Rejection class

3. Representation of prototypes

- Mean feature vector
- Use prototypes to find new instances in other images

2 Classification

- ► Generative models: easy incremental learning
- ► Discriminative models: higher efficiency
- ⇒ Integration of both representations
- \Rightarrow PCAaLDA gets feature vectors \boldsymbol{y} for every image patch in classification subspace of dimension C, cf. (Fidler, 2006).
- ► Classification in subspace via bayes classificator

$$p(c|\mathbf{y}) = \operatorname{argmax}_{c} p(\mathbf{y}|\mu_{c}, \Sigma_{c}) p(c)$$

with uni-modal gaussian $p\left(\boldsymbol{y}|\mu_{c},\Sigma_{c}\right)$ for every subclass c

 \blacktriangleright likelihood ratio approximate $1\Rightarrow$ user decides whether to accept the sample or to reject it

3 Incremental update

- ► Use prototypes for detecting new instance in a new image
- ► Start the recursive search procedure again
- Classification according learned models
- ▶ Update prototypes by adding the mean p_c of new images
- Evaluate batch LDAaPCA on all data gathered

Future Work

- ► Improve clustering, find optimal thresholds for clustering guided by the data
- ► Adapt the current subspace methods to incremental LDA, cf. (Uray et al., 2007)
- ► Include depth information

Experiments - Initialisation

Figure: Initialisation: (a) Initial example. (b) Result of detecting new instances. (c) Prototypes (1^{st} number: class, 2^{nd} number: subclass, clamped number: number of associated samples). (d) Samples projected into the PCAaLDA subspace. Red: class 1-1, green: class 1-2, blue: background. Dashed lines: decision boundaries according the class boundaries and the rejection area.

Experiments - Sequential Update

Figure: 2. to 4. Step. (a), (d) and (g): Results of automatically detect new instances before editing. (b), (e) and (h): Result after editing. (c), (f) and (i): Prototypes.

References

Fidler, S. (2006). Combining Reconstructive and Discriminative Subspace Methods for Robust Classification and Regression by Subsampling. *PAMI 28*(3), 337–350. Uray, M., D. Skočaj, P. M. Roth, H. Bischof, and A. Leonardis (2007, September). Incremental LDA Learning by Combining Reconstructive and Discriminative Approaches. In *BMVC*. Van Gool, L., G. Zeng, F. Van den Borre, and P. Müller (2007, September 19-21). Towards mass-produced building models. In *PIA*, Volume 36, Munich, Germany, pp. 209–220.

