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Motivation

• Image segmentation is an ill-posed problem

• Additional constraints need to be imposed to achieve the desired results

• Fortunately, in the field of medical image segmentation a significant amount 
of prior knowledge is available
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Motivation

• Image segmentation is an ill-posed problem

• Additional constraints need to be imposed to achieve the desired results

• Fortunately, in the field of medical image segmentation a significant amount 
of prior knowledge is available

Non-contrast CT scan Prior Knowledge

• However, it is difficult to unify various types of prior information available 
such as appearance, location and shape into a single framework

Heart
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Objective

• Using prior knowledge to constrain the solution space of the Image 
Segmentation problem

• Here, we focus on three types of prior knowledge:

− Location

− Appearance

− Spatial connectivity to a known seed region

Our Approach

• We propose a fuzzy theoretic model to incorporate knowledge-driven 
constrains into the MAP-MRF formulation of the segmentation problem
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Image Segmentation

• We cast the segmentation problem as a MAP-MRF problem

• The MAP-MRF solution can be computed by minimizing the following Gibbs 
energy function:

“find a mapping                 that minimizes an energy functional              conditioned 
over the observed image data D, where P is the set of pixels and L is the set of labels.”

:f P L→ ( | )E f D

( | ) = ( | ) ( , | )i i ij i j

i P i P j N
i

E f D V f D V f f D
∈ ∈ ∈

+∑ ∑∑

energy function:

First-order 
Clique 

Potential

Second-order 
Clique 

Potential
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( )( )ˆ( | ) = ( ), ( )f fi i
O O

V f D c t i iµ µ

Definition of First-order Clique Potential -

measures the cost of assigning label     to pixel    given prior 
knowledge about the data D

( | )
i i

V f D

( | )i iV f D i
f i

We define              as a spatial fuzzy set defined on the image space S as 
shown below:

( | )i iV f D

( )( )ˆ( | ) = ( ), ( )f fi i
O O

i iV f D c t i iχ λµ µ

Fuzzy Connectivity Prior Fuzzy Location Prior
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Fuzzy Connectivity Prior -

• We use fuzzy connectedness proposed by Udupa et. al. to model 

• Fuzzy connectedness models the following notion:

“if two regions have about the same appearance and if they are spatially connected to each 

other in the image space then they most likely belong to the same object”

( ) : [0,1]fi
O

i Sχµ →

( )fi
O

iχµ

R1

R2
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J. K. Udupa and S. Samarasekera. Fuzzy connectedness and object definition: Theory, algorithms, and applications in image
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Fuzzy Connectivity Prior - … ( ) : [0,1]fi
O

i Sχµ →

R1
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Fuzzy Connectivity Prior - … ( ) : [0,1]fi
O

i Sχµ →
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Fuzzy Connectivity Prior - … 

• We define           as a spatial fuzzy set representing a fuzzy connected component of object     
given a seed region R of the object as shown below:

• is the fuzzy affinity function representing the affinity between two neighboring pixels 

( )fi
O

iχµ fi
O

1 <| |

( ) = ( , 1)max min
f fi i

O O

j pp P
RiRi Ri

i j jχµ ψ
≤∈

  +   

( , )fi
O

p qψ

( ) : [0,1]fi
O

i Sχµ →

• is the fuzzy affinity function representing the affinity between two neighboring pixels 

and    as shown below:

( , )fi p qψ

qp

( , ) ( , )
( , ) =  

1

f fi i

fi

O O
O p q p q if p q

p q
otherwise

ν αµ µ
ψ

 ⋅ ≠



1
( , ) =  

0

fi
O p

if q N
p q

otherwise
νµ

∈



1 1

( )
( , ) = Pr = ;

2
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O Op qD D

p q w xαµ θ
+ 

⋅  
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( )2 2
Pr =| |; fi

O

p q
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Adjacency Test

Similarity in Appearance
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Fuzzy Location Prior -

is a spatial fuzzy set representing the likelihood that object     is located at 
pixel    given prior knowledge about the location of the object 

( ) : [0,1]fi
O

i Sλµ →

( )fi
O

iλµ fi
O

i

• An organ’s location is specified in terms of its spatial relationship with neighboring 
organs

• For example, anatomically the heart is located:

– “inside” the thoracic cavity

– “between” the lungs
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Fuzzy Location Prior - …

• In such a scenario, we model          as a fuzzy conjunction of its spatial relationship 
with each of the neighboring organs as shown below:

( )fi
O

iλµ

( ) {( ) = ..., ( ),... ; = 1,2..., }f fi i
O O

NO
k

i t i k Tλµ µ

Spatial relationship with neighboring object K

( ) : [0,1]fi
O

i Sλµ →

• A variety of ways to model fuzzy spatial relationships such as “inside”, “outside”, “left 
of”, “right of” etc. are available in literature (see Bloch et. al. )

• If segmentation of neighboring objects is not available, we can define          using a 
probabilistic atlas obtained after performing atlas registration

( )fi
O

iλµ
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We define                  based on a Generalized Potts Interaction model* as 
shown below:

Definition of Second-order clique potential -

measures the cost of jointly assigning a label     to pixel    and 
a label    to its neighboring pixel         given any prior knowledge about 
the data D

( , | )
ij i j

V f f D

( , | )ij i jV f f D i
f i

jf
ij N∈

( , | )ij i jV f f D

( )( , | ) = ( , | ) 1 (| |)
ij i j i j

V f f D K i j D f fδ⋅ − −

( , | )K i j D if f f≠ ( , | )
=  

0

i j
K i j D if f f

otherwise

≠



( )1( , | ) = exp ( ) ( )T

i j k i jK i j D D D D D−− − Σ −

where     and     are feature vectors of pixels   and    respectively
is the covariance matrix  

iD jD i j

kΣ
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70(2):109–131, 2006.



Minimizing Gibbs Energy using Graph-Cuts
},{ ji },{ li

edge weight (cost) for

n-link -

t-link -

},{ ji )|,( DjiK Nji ∈},{

},{ li )(lVW ii − LlPi ∈∈ ,

• Minimizing             is equivalent to find the minimum cost multi-way cut on 
the above graph

• For L = {0,1}, a global minimum can be obtained in polynomial time by 
solving the s-t minimum cut problem

• For |L| > 2, the optimal multi-way cut problem is NP-Hard

( | )E f D
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Experiments: Heart Segmentation

Foreground Background

Fuzzy Location Priors
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Experiments: Heart Segmentation …
Foreground Background

Foreground Background

First-order clique potentials

Foreground Background
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Conclusion

• Fuzzy theoretic approach to incorporate prior knowledge into the MAP-MRF 
formulation

• How to incorporate prior knowledge about an object’s

– “Location”

– “Appearance and spatial connectivity to a known seed region”

• Future work will focus on the incorporation of shape priors into the 
proposed framework
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