
Summary. 
We propose a method for rapidly classifying surface reflectance directly from the output 
of spatio-temporal filters applied to an image sequence of rotating objects. Using image 
data from only a single frame, we compute histograms of image velocities and classify 
these as being generated by a specular or a diffusely reflecting object. Exploiting 
characteristics of material specific image velocities we show that our classification 
approach can predict the reflectance of novel 3D objects, as well as human perception.

a

Specular Flow.
The relative displacement of a specular feature or highlight due to camera or observer 
motion is negatively related to the magnitude of surface curvature [1, 2]. For an in-
depth rotating specular ob ject (Fig. 1A) the distribution of image velocities, generated 
by the specular flow across the object, will have regions of relatively high and low 
magnitude whose specific range is directly related to the magnitude and range of 
surface curvatures. 
This velocity variability can be exploited for reflectance classification: high image 
velocity variability, which can be easily identified from the image velocity histogram, 
appears toa be crucial to induce the spatio-temporal characteristics associated with 
perceived shininess [3]. Conversely, specular objects with low curvature variability will, 
when rotated, generate low variability image velocity distributions which are not distinct 
from those generated by diffusely reflecting objects (Fig. 1B).  

Implementation.
1. Filter image sequences by spatio-temporal filters [4].

2. Estimate velocities from the filter coefficients using the max-steering method of 
Simoncelli [5].

3. Perform PCA on image velocities to estimate the dominant direction of motion for a 
given movie frame, and project image velocities onto direction vector.

4. Estimate velocity histogram densities using 3 approaches:

a) Generalized cross-entropy density estimator [6]. 
Use histogram estimates of conditional densities of velocity xi given shiny S, P(xi|S), 
and matte M, P(xi|M), from image sequences judged shiny and matte in [3]; Classify 
movie frame as shiny: P(xi'|S)/P(xi'|M)>k, where xi' =sample velocity, k=.16

b) Mixture of Gaussians with two components [7]. 
Classify image regions as "fast" or "slow" and project classified pixel back onto image 
frame; Compute velocity contrast from two estimated means: Cb=|mu1-mu2|/max
(sigma1,sigma2); If Cb>1 sample is specular 

c) Convolutive non-negative matrix factorization [8] with 3 components. 
Estimate weights for novel sequence by maximizing likelihood of the total sample 
evaluated on components with respect to the weights; Use best fitting weight values to 
classify a sample as shiny or matte: Cw=1/2(wf1+wf3)/wf2; If Cw>1 sample is specular    

Results.

5. Test Set. 36 movies (6 shapes x 6 light probes 
Fig. 2) of rotating specular superellipoids:
 
r_x=1, r_y=r_z=0.64; 
n_1,n_2 = 0.3, 0.5, 0.7, 0.8, 0.9 or 1.0; 
rotation in depth with respective angular speed 
(0.1, 0.35, 0.61, 0.74, 0.87, 1.0 deg/frame)

1=[ |x/r_x|^2/n_2 + |y_r_y|^2/n_2 ] + |z/r_z|^2/n_1    

Figure 3. A. Sample frames for superellipsoids and for the specular and diffusely 
reflecting Utah Teapot (novel object), rendered with Radiance [9]. B. Corresponding 
velocity histograms. C. Corresponding pixel classification results. 

Table1. Normalized Log-Likelihood 
Ratios. LLR > k classified as shiny with 
a predicted error rate of less than 5. ('T' 
Training data) 

Table 2. Cb Results. When Cb>1 the  
histogram is classified as bimodal - a 
rough predictor of material shininess. 

Figure 4. A. NNMF Results. Distribution 
of estimated weights across stimulus 
set. Ellipsoidal objects' velocity 
histograms (multiples of 6) tended to 
have high weights on component 2 
(solid triangle) whereas most cube-like 
objects tended have high weights on 
components 1(circle) and/or 3(square). 
B. Results Cw (scaled by 1/5 for 
visualization) & Observer data. C. 
Comparison: Classification of filter 
coefficient (without conversion to 
velocities) LDA.
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Figure 5. Predicting Human Perception. In the 
experiment 4 observers indicated via keyboard press 
on a scale from 1 (matte) - 7 (mirror reflection) how 
shiny a given superellipsoid appeared. Normalized 
results are also shown in Fig. 4. Additional 
experimental details can be obtained from [3]. 
Regression of normalized LLRs (Table 1) onto 
normalized observer data. Training data was 
excluded from the regression.

Objective classification of Novel 3D object. To verify that the velocity distribution can 
be sufficient for objectively classifying material we tested an object with more complex 
shape variation: a rotating version of the Utah "Teapot'', rendered with a diffuse and with 
a specular reflectance (see Fig. 3A (right)). Teapots were correctly classified as specular 
and matte for all three methods.  Histograms:  LLR specular and diffusely reflecting 
teapot were 0.26 (classified as shiny) and 0.008 (classified as matte). Mixture of 
Gaussians: Cb for specular and diffusely reflecting teapot were 1.16 and 0.87 
respectively. NNMF: specular teapot classified as shiny Cw=33.2, diffusely reflecting 
teapot classified as matte Cw= 0.7954.

References.
1. Koenderink & van Doorn,1980; 2. Blake,1985; 3. 
Doerschner et al., 2007; 4. Derpanis & Gryn, 2005; 5. 
Simoncelli,1993; 6. Botev, 2006; 7. Nabney, 2002; 8. 
O'Grady & Perlmutter, 2006; 9. Ward, 1998   
    

Figure 1. 
A B

R^2=.45, p<0.00001

Figure 5.

+

+n_1,n_2=0.3

n_1,n_2=0.5
n_1,n_2=0.7

n_1,n_2=0.8

n_1,n_2=0.9
n_1,n_2=1.0

Classification of Surface Material from Image Velocities
Katja Doerschner(1), Dan Kersten(2) and Paul Schrater(2,3)

(1) Dept. of Psychology, Bilkent University, (2) Dept. of Psychology, University of Minnesota & (3) Dept. of 
Computer Science & Engineering, University of Minnesota

ICVSS 2009 Bilkent, Computational & Biological Vision Group

Figure 4.

Observer ratings Classification Results Threshold

Light probe ID

S
ha

p
e 

ID
; n

_1
,n

_2

Contact: katja@bilkent.edu.tr
|




