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Challenge: Model Selection

Find the best model for the following training set to classify new and
unseen data: How many mixtures (cluster)?
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Model Selection: Under-Fitting

Only few clusters = the model is too general and the accuracy is poor
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Model Selection: Over-Fitting

Nearly one cluster for each data point = the model is too specific and
fails for new and unseen data
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Model Selection: Good solution

DF mixture: iter# 25
T
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Model Selection with parametric approaches

Try several models with different parameters and choose the best
model according to a measure such as accuracy or log-likelihood

k=1 k=2 k=3 k=4 k=5
acc=20% acc=60.2% acc=60.5% acc=87.5% acc=90.3%
loglik = -603.1 loglik = -600.8 loglik = -593.8 loglik = 329.1 loglik = 330.5

k=6 k=7 k=9 k=13 k=15
acc=85.7% acc=80.7% acc=84.4% acc=84.9% acc=80.7%
loglik = -329.9 loglik = -318.3 loglik = -333.9 loglik = -342.9 loglik = -364.1
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Model Selection with parametric approaches

Try several models with different parameters and choose the best
model according to a measure such as accuracy or log-likelihood
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Model Selection with Dirichlet Processes

Goal: Algorithm defines by itself the optimal number of clusters without

any prior knowledge

I

Dirichlet Process Mixture Models
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Application: Topic models

@ Histogram of Oriented Gradient _
descriptors: Bag of Words
Representation U

@ Topic: typical distribution of
gradients

@ Document: document specific
distribution of topics

@ Dirichlet Process finds the number
of topics
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Task description

e Task description
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Open questions

@ What are the properties of the Dirichlet Process?
@ When does the process 'end’?

@ Can one simply add new and unseen data?
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Dirichlet Processes in different models

Explore the Dirichlet Process in different models

yes

DPMM
(Dirichlet Process Mixture Model)

Cluster assignments

no

NCRP
(Nested Chinese Restaurant Process)
[Blei2004]

HDPMM
(Hierarchical Dirchlet Process Mixture)
[Teh2005]

\/

no Dimensionality reduction yes
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Dirichlet Processes

© Dirichlet Processes
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Dirichlet Process

@ Distribution of discrete distributions
@ Possiblity of infinitely many bins

@ Methods of representation:

@ Chinese Restaurant Process
o Stick Breaking
@ Urne Scheme
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Dirichlet Processes

Chinese Restaurant Process

—\\\ 11777
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Chinese Restaurant Process

Guest enters restaurant and decides on the basis of the current
situation either for:

@ occupied table i: # (m; guests on table i, m number of

guests, v parameter) or for

Q empty table: 71—
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Chinese Restaurant Process

Guest enters restaurant and decides on the basis of the current
situation either for:
@ occupied table i: # (m; guests on table i, m number of
guests, v parameter) or for
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Nested Chinese Restaurant Processes

e Nested Chinese Restaurant Processes
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Nested Chinese Restaurant Processes

Nested Chinese Restaurant Processes [Blei2004]

Each document is assigned to one path and is combined from the
topics of the path.

General @, ﬁﬂ

Specific
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Nested Chinese Restaurant Processes

Functioning of the NCRP on a toy example

Recover the left tree with Nested Chinese Restaurant Process (NCRP)

1 L

——— LI B
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Observation

Paths with different arrangement of topics cannot be merged

Iteration: 120

Heuristic: the tokens are assigned randomly to the levels of the tree
all n iterations = decomposition of the fixed topic structure
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Results: Hierarchy for Caltech 101 [Ca02007]

Partial hierarchy of NCRP with heuristic

= a|[s | T
Purity: ﬁ’.}

71.4% 90.0% 100% 100% 100% 100%
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Conclusion: Dirichlet Processes

e Conclusion: Dirichlet Processes
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Conclusion

@ What are the properties of the Dirichlet Process? - clustering
property means few clusters with many images and many clusters
with only one or two images

@ When does the process ’end’? - never, but you can observe the
log-likelihood of the samples

@ Can you simply add new and unseen data? - Yes, mostly after
one ore two iterations

Thank you for your attention!
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