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Motivation

Challenge: Model Selection

Find the best model for the following training set to classify new and
unseen data: How many mixtures (cluster)?
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Motivation

Model Selection: Under-Fitting

Only few clusters ⇒ the model is too general and the accuracy is poor
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Motivation

Model Selection: Over-Fitting

Nearly one cluster for each data point ⇒ the model is too specific and
fails for new and unseen data
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Motivation

Model Selection: Good solution
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Motivation

Model Selection with parametric approaches

Try several models with different parameters and choose the best
model according to a measure such as accuracy or log-likelihood
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Motivation

Model Selection with Dirichlet Processes

Goal: Algorithm defines by itself the optimal number of clusters without
any prior knowledge

⇓

Dirichlet Process Mixture Models
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Motivation

Application: Topic models

Histogram of Oriented Gradient
descriptors: Bag of Words
Representation
Topic: typical distribution of
gradients
Document: document specific
distribution of topics
Dirichlet Process finds the number
of topics

topic model

⇓
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Task description

Open questions

What are the properties of the Dirichlet Process?

When does the process ’end’?

Can one simply add new and unseen data?
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Task description

Dirichlet Processes in different models

Explore the Dirichlet Process in different models

Sandra Ebert (ICVSS 2009) Dirichlet Process Mixture Models 08. Jul 2009 13 / 26



Task description

Dirichlet Processes in different models

Explore the Dirichlet Process in different models

Sandra Ebert (ICVSS 2009) Dirichlet Process Mixture Models 08. Jul 2009 14 / 26



Dirichlet Processes

1 Motivation

2 Task description

3 Dirichlet Processes

4 Nested Chinese Restaurant Processes

5 Conclusion: Dirichlet Processes

Sandra Ebert (ICVSS 2009) Dirichlet Process Mixture Models 08. Jul 2009 15 / 26



Dirichlet Processes

Dirichlet Process

Distribution of discrete distributions
Possiblity of infinitely many bins

Methods of representation:

Chinese Restaurant Process
Stick Breaking
Urne Scheme
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Dirichlet Processes

Chinese Restaurant Process
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Dirichlet Processes

Chinese Restaurant Process

Guest enters restaurant and decides on the basis of the current
situation either for:

1 occupied table i: mi
γ+m−1 (mi guests on table i, m number of

guests, γ parameter) or for
2 empty table: γ

γ+m−1

⇒ Clustering property
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Nested Chinese Restaurant Processes

Nested Chinese Restaurant Processes [Blei2004]

Each document is assigned to one path and is combined from the
topics of the path.
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Nested Chinese Restaurant Processes

Functioning of the NCRP on a toy example

Recover the left tree with Nested Chinese Restaurant Process (NCRP)
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Nested Chinese Restaurant Processes

Observation

Paths with different arrangement of topics cannot be merged

Heuristic: the tokens are assigned randomly to the levels of the tree
all n iterations ⇒ decomposition of the fixed topic structure
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Nested Chinese Restaurant Processes

Results: Hierarchy for Caltech 101 [Cao2007]

Partial hierarchy of NCRP with heuristic
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Conclusion: Dirichlet Processes

Conclusion

What are the properties of the Dirichlet Process? - clustering
property means few clusters with many images and many clusters
with only one or two images

When does the process ’end’? - never, but you can observe the
log-likelihood of the samples

Can you simply add new and unseen data? - Yes, mostly after
one ore two iterations

Thank you for your attention!
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