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AbstractAbstract
Image segmentation is, in general, an ill-posed problem and additional constraints need to be imposed in order to achieve the desired results. Particularly, in the field of medicalg g , g , p p p y,
image segmentation, a significant amount of prior knowledge is available that can be used to constrain the solution space of the segmentation problem. However, most of this prior
knowledge is, in general, vague or imprecise in nature, which makes it very difficult to model.

In this poster we present Fuzzy-Cuts a knowledge-driven graph-based method for medical image segmentation We cast the problem of image segmentation as the Maximum AIn this poster, we present Fuzzy Cuts, a knowledge driven, graph based method for medical image segmentation. We cast the problem of image segmentation as the Maximum A
Posteriori (MAP) estimation of a Markov Random Field (MRF) which, in essence, is equivalent to the minimization of the corresponding Gibbs energy function. Considering thePosteriori (MAP) estimation of a Markov Random Field (MRF) which, in essence, is equivalent to the minimization of the corresponding Gibbs energy function. Considering the
inherent imprecision that is common in the a priori description of objects in medical images, we propose a fuzzy theoretic model to incorporate knowledge-driven constraints into theinherent imprecision that is common in the a priori description of objects in medical images, we propose a fuzzy theoretic model to incorporate knowledge driven constraints into the
MAP-MRF formulation. In particular, we focus on prior information about the object’s location, appearance and spatial connectivity to a known seed region inside the object. To thatp , p j , pp p y g j
end, we introduce fuzzy connectivity and fuzzy location priors that are used in combination to define the 1st-order clique potential of the Gibbs energy function., y y y p q p gy

I i d h li i f F C h bl f h i i d h (CT) dIn our experiments, we demonstrate the application of Fuzzy-Cuts to the problem of heart segmentation in non-contrast computed tomography (CT) data.

Formulation of Segmentation Problem ( | )V f f D2nd-order Clique Potential -Fuzzy Connectivity Prior - ( )fiO iμFormulation of Segmentation Problem ( , | )ij i jV f f D2nd-order Clique Potential -Fuzzy Connectivity Prior - ( )fcon iμ
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We cast the segmentation problem as a MAP MRF
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We cast the segmentation problem as a MAP-MRF
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1st order Clique Potential ( | )V f D which we define as follows:
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For L = {0 1} a global minimum can be obtained inset on the image space S as shown below:
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