

Ross B. Girshick
Department of Computer Science

University of Chicago

Joint work with Pedro Felzenszwalb (UofC) and
David McAllester (TTI-C)

Object detection with heuristic
coarse-to-fine search

What's the problem?

Localize instances of a generic object category in a real-world image.

Example: find all bicycles in these images.
(from the PASCAL 2007 dataset)

Our family of models

1. Multiscale deformable part models

2. Mixtures of multiscale star models

3. Visual grammars

1 ½ 2 ½ 3

1. Multiscale deformable part models (“star models”)

root filter part filters deformation costs

Detection with multiscale star models

Use dynamic programming and distance
transforms.

 - linear in # of filters

 - the constant factor is large, e.g.,
 640x480 image → ~250M fp mults

[P. Felzenszwalb, D. McAllester, and D. Ramanan 2008]threshold and apply non-maximal suppression
[P. Felzenszwalb, D. Huttenlocher 2000]

Find local maxima of:

SM (L) =
Pn

i=1mi(li)¡
Pn
i=2 di(l1; li);

above a threshold T .

L = (l1; : : : ; ln) = object hypothesis.

li = ¯lter locations in feature pyramid.

2. Mixtures of multiscale star models

Detection: apply the same procedure to each component
independently, and then take the max over component scores.

[P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. 2009]

3. Visual grammars

B ! R

R ! P1P2P3P6P5P6

B ! R1jR2
R1 ! P1P2P3P6P5P6

R2 ! P7P8P9P10P11P12

B ! R1jR2j : : : jRk

R1 ! P1P2 : : : Pn1
...

Rk ! P1P5P7

P1 ! MP1jMP2

MP1 ! SP1SP2

MP2 ! SP1SP3

...

…

…

The big picture (evolution from the pictorial structure model)

...

B ! R1jR2j : : : jRk
R1 ! P1P2 : : : Pn1

...

Rk ! P1P5P7

P1 ! MP1jMP2

MP1 ! SP1SP2

MP2 ! SP1SP3

...

[M.A. Fischler and R.A. Elschlager.
“The representation and matching of pictorial structures.”]

Challenges on the path to rich grammar models

1. Model initialization and training
● How do we initialize parts, subparts, mixtures

of parts, shared part dictionaries?

● How do we train rich models from bounding
boxes? (latent SVM)

2. Computational efficiency
● Rich model → expensive detection/inference.

● Inference must be fast enough to make rich
grammar models usable in practice.

● What if we have models for 10,000 object
classes?

1. Model initialization and training
● How do we initialize parts, subparts, mixtures

of parts, shared part dictionaries?

● How do we train rich models from bounding
boxes? (latent SVM)

2. Computational efficiency
● Rich model → expensive detection/inference.

● Inference must be fast enough to make rich
grammar models usable in practice.

● What if we have models for 10,000 object
classes?

The problem: we need a real parsing algorithm,
but still limited to a small number of filters.

Our focus today:

Challenges on the path to rich grammar models

Motivation

1. Coarse-to-fine detection (somewhat obvious)

i. Exploit sparseness

ii.Early termination of parses

2. Heuristic best-first search (less obvious)

i. Non-maximal suppression of competing parses

Our approach: coarse-to-fine detection
+ heuristic best-first search

This talk: start with star models.
Current work: general visual grammar parsing & learning.

A CTF model hierarchy
coarsest finest

M1

t1

M2

t2

models:
thresholds:

: : : ! increasing computational cost ! : : : Mn = M

tn = T

coarsest

Ljn¡1

M1

t1

M2

t2

models:
thresholds:

: : : ! increasing computational cost ! : : :

Lj1 : : : ! building an object hypothesis ! : : :

Require: SMi(Lji) ¸ ti

Mn = M

tn = T

Ljn = L

partial
hypotheses:

finest
A CTF model hierarchy

CTF detection algorithm

coarsest finest

For each root location:
apply models in coarse to
fine order while above
termination threshold

: : : ! continue while SMi(Lji) ¸ ti ! : : :

Now, add heuristic best-first search →
“Heuristic coarse-to-fine detection”

Best-first heuristic: an upper bound on how much the score of a

partial hypothesis can improve.

e.g.:

Lj4 Lj4¤

best-¯rst heuristic if it holds for any pair Lj4 and Lj4¤.

h(Lj4) ¸ SM (Lj4¤)¡ SM4(Lj4)

Heuristic coarse-to-fine detection algorithm

● Don't iterate over locations in feature pyramid

● Instead: priority queue of partial object hypotheses

● Order queue by partial score + heuristic function

● Apply non-maximal suppression on the fly → extra

pruning

● Typically very fast if only looking for the single best

detection

Heuristic coarse-to-fine detection algorithm

● Don't iterate over locations in feature pyramid

● Instead: priority queue of partial object hypotheses

● Order queue by partial score + heuristic function

● Apply non-maximal suppression on the fly → extra

pruning

● Typically very fast if only looking for the single best

detection

Problem:
We don't know how to select admissible heuristics
that yield good best-first search order!

Solution: select inadmissible heuristics

Let (I; L) be an (image, object hypothesis) pair where SM (L) ¸ T .

Assume there's an unknown distribution D over an arbitrary set of (I; L) pairs.

D induces a distribution Di over h¤i (L) = SM (L)¡SMi(Lji), where (I; L) » D.

Let Hi be a sample from Di.

Claim:

ĥi = max (Hi)

for i = 1; : : : ; n is a \good" rule.

Theoretical justification: Probably Approximately Admissible

The rule is good in the sense that we can provide a PAC-like bound on the error
rate.

Let err(ĥ1; : : : ; ĥn) = P(I;L)»D(ĥi < h¤i (L)) for any i = 1; : : : ; n.

Theorem

Using the rule ĥi = max (Hi), for ¯xed ² and ±,

if jHij > n
² ln

n
± ; then P (err(ĥ1; : : : ; ĥn) > ²) < ±:

That is, the heuristic is \approximately" admissible with high probability.

Choosing inadmissible coarse-to-fine thresholds

[C. Zhang and P. Viola. “Multiple-instance pruning for learning efficient cascade detectors.” NIPS, pages 1681–1688. 2007]

1. Similar procedure as for heuristics.

2. Thresholds ti are lower bounds on SMi(Lji) =) min rule.

3. Probably approximately admissible theorem applies again.

Justi¯cation of the standard trick:
pick thresholds that yield a low false negative rate on training or validation data.

Equivalent to Zhang and Viola's \multiple-instance pruning."

foo

PASCAL 2007 Testing Time

class DP HCTF
aeroplane 5.70h 3.86h 1.48
bicycle 5.79h 2.37h 2.44
bottle 4.54h 2.28h 1.99
bus 5.75h 2.85h 2.02
car 4.37h 3.82h 1.15
cow 6.09h 3.40h 1.79
horse 6.00h 4.27h 1.41

motorbike 6.01h 2.21h 2.72
person 4.95h 4.45h 1.11
sheep 4.81h 2.85h 1.69
train 6.59h 2.54h 2.59

tvmonitor 9.63h 3.07h 3.13
(»5000 images on a single CPU)

foo

PASCAL 2007 Average Precision*

class DP HCTF
aeroplane 0.281 0.285 1.41%
bicycle 0.558 0.548 -1.80%
bottle 0.269 0.261 -3.07%
bus 0.437 0.443 1.42%
car 0.465 0.464 -0.06%
cow 0.207 0.195 -5.93%
horse 0.438 0.432 -1.23%

motorbike 0.384 0.397 3.48%
person 0.332 0.336 1.31%
sheep 0.196 0.200 2.43%
train 0.340 0.371 9.02%

tvmonitor 0.384 0.370 -3.84%
(* prior to any post-processing steps)

Experimental results I: PASCAL 2007 (comp3)

The theoretical bounds are somewhat loose. Around 200-
300 examples are sufficient in practice.

We used heuristic coarse-to-fine detection in training and testing.
Results are for two-component mixture models.

Experimental results II: INRIA Person Dataset

Method DP scored AP = 0.878. Testing time = 40.2 minutes.
Method HCTF scored AP = 0.876. Testing time = 15.0 minutes (2.68x faster).

Pruning efficiency: where are filter scores computed?

component 1

component 2

Computation of mi(l) for i = 2; :::; 7. The square in (g) is 11x11 HOG cells.

white = computed
black = not computed

foo

HCTF Pruning E±ciency

Mi INRIA
1 92.9%
2 4.77%
3 1.12%
4 1.02%
5 0.10%
6 0.03%
7 0.02%

foo

HCTF Pruning E±ciency

Mi aero bike bottle bus car cow horse mbike person sheep train tv
1 55.8% 88.4% 58.5% 67.5% 35.3% 72.9% 51.3% 86.1% 32.8% 38.4% 75.5% 60.3%
2 11.0% 8.9% 29.2% 28.2% 39.7% 14.7% 22.9% 11.6% 19.7% 41.8% 20.2% 17.7%
3 9.7% 1.4% 9.7% 2.3% 10.9% 9.7% 16.8% 1.4% 16.3% 17.3% 2.9% 15.0%
4 9.8% 1.0% 1.6% 0.7% 6.2% 2.6% 6.7% 0.6% 14.6% 2.1% 0.9% 5.9%
5 5.3% 0.2% 0.9% 0.9% 6.4% 0.1% 1.7% 0.3% 11.6% 0.2% 0.3% 0.5%
6 8.4% 0.1% 0.0% 0.4% 0.8% 0.0% 0.5% 0.0% 3.7% 0.1% 0.1% 0.2%
7 0.1% 0.0% 0.0% 0.1% 0.6% 0.0% 0.1% 0.0% 1.3% 0.1% 0.0% 0.2%

Pruning efficiency: by the numbers

INRIA Person:

PASCAL 2007:

Some criticisms

● More complicated than parsing with dynamic
 programming

● Maybe a GPU implementation will be fast enough (even
 for 10,000 classes)?

● Loss of some robustness to occlusion (due to CTF
 hierarchy)

● Best-first search destroys cache coherence :-(

Conclusions:

➔ Heuristic coarse-to-fine detection with inadmissible heuristics
and thresholds works well for our mixture models.

➔ Should see more significant payoffs on richer models (richer
models have more discriminating filters → better pruning).

➔ Still, 2-3x speedup for some classes with 2-component mixture.

Next:

➔ More work is needed to successfully apply this technique to

grammar models (beyond mixture models – AO* search)

➔ Continue progression to rich models: shared part dictionary,
more than 2 levels, part-level mixtures, etc.

Conclusions and next steps

Thank you.

Questions?

Download source code*
for training and detection at

http://people.cs.uchicago.edu/~pff/latent/

*Code for our PASCAL 2008 system – not HCTF
search or visual grammars.

Thank you.

Questions?

Download source code*
for training and detection at

http://people.cs.uchicago.edu/~pff/latent/

*Code for our PASCAL 2008 system – not HCTF
search or visual grammars.

Thank you.

Questions?

Download source code*
for training and detection at

http://people.cs.uchicago.edu/~pff/latent/

*Code for our PASCAL 2008 system – not HCTF
search or visual grammars.

