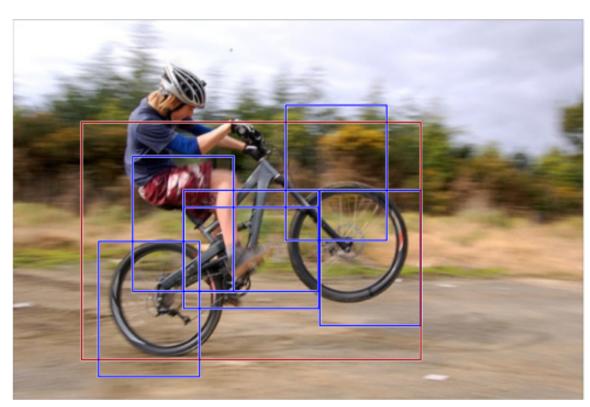
Object detection with heuristic coarse-to-fine search

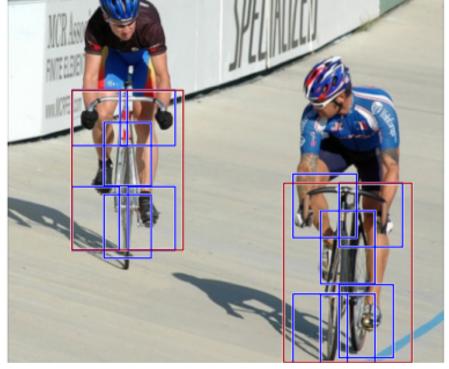
Ross B. Girshick
Department of Computer Science
University of Chicago

Joint work with Pedro Felzenszwalb (UofC) and David McAllester (TTI-C)

What's the problem?

Localize instances of a generic object category in a real-world image.





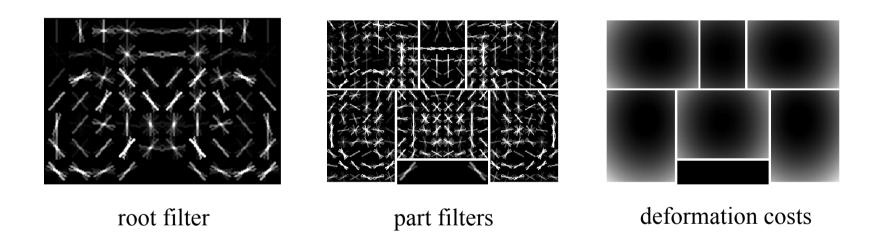
Example: find all bicycles in these images. (from the PASCAL 2007 dataset)

Our family of models

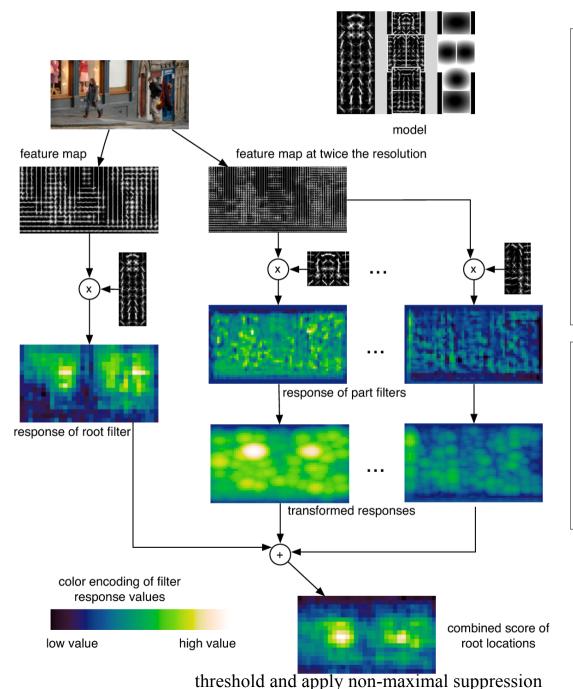
- 1. Multiscale deformable part models
- 2. Mixtures of multiscale star models
- 3. Visual grammars

$$1 \subset 2 \subset 3$$

1. Multiscale deformable part models ("star models")



Detection with multiscale star models



Find local maxima of:

$$S_M(L) = \sum_{i=1}^n m_i(l_i) - \sum_{i=2}^n d_i(l_1, l_i),$$

above a threshold T.

$$L = (l_1, \ldots, l_n) = \text{object hypothesis.}$$

 l_i = filter locations in feature pyramid.

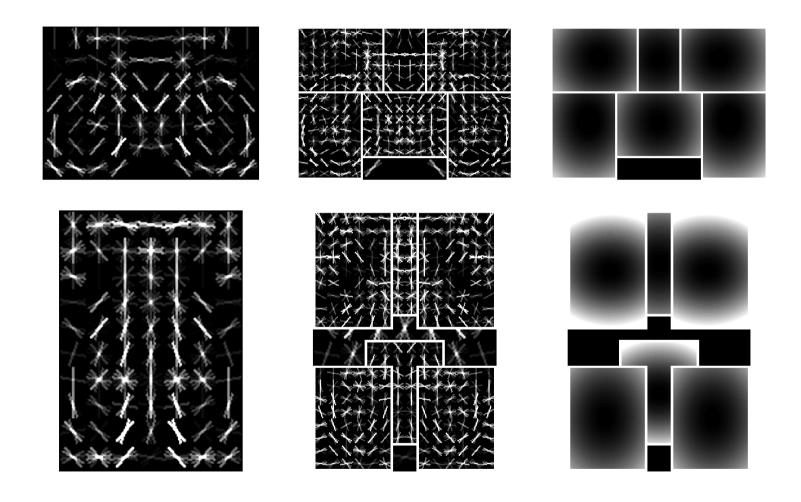
Use dynamic programming and distance transforms.

- linear in # of filters
- the constant factor is large, e.g., 640x480 image $\rightarrow \sim 250$ M fp mults

[P. Felzenszwalb, D. Huttenlocher 2000]

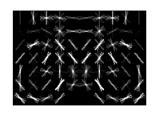
[P. Felzenszwalb, D. McAllester, and D. Ramanan 2008]

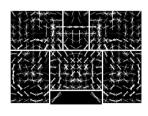
2. Mixtures of multiscale star models

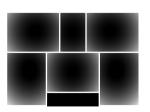


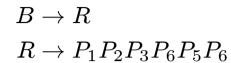
Detection: apply the same procedure to each component *independently*, and then take the max over component scores.

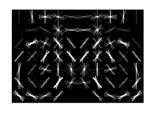
3. Visual grammars

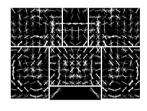


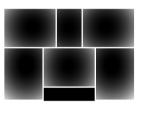


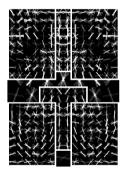


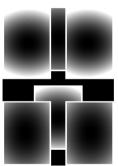












$$B o R_1 | R_2$$
 $R_1 o P_1 P_2 P_3 P_6 P_5 P_6$ $R_2 o P_7 P_8 P_9 P_{10} P_{11} P_{12}$

$$B \to R_1 | R_2 | \dots | R_k$$
$$R_1 \to P_1 P_2 \dots P_{n_1}$$

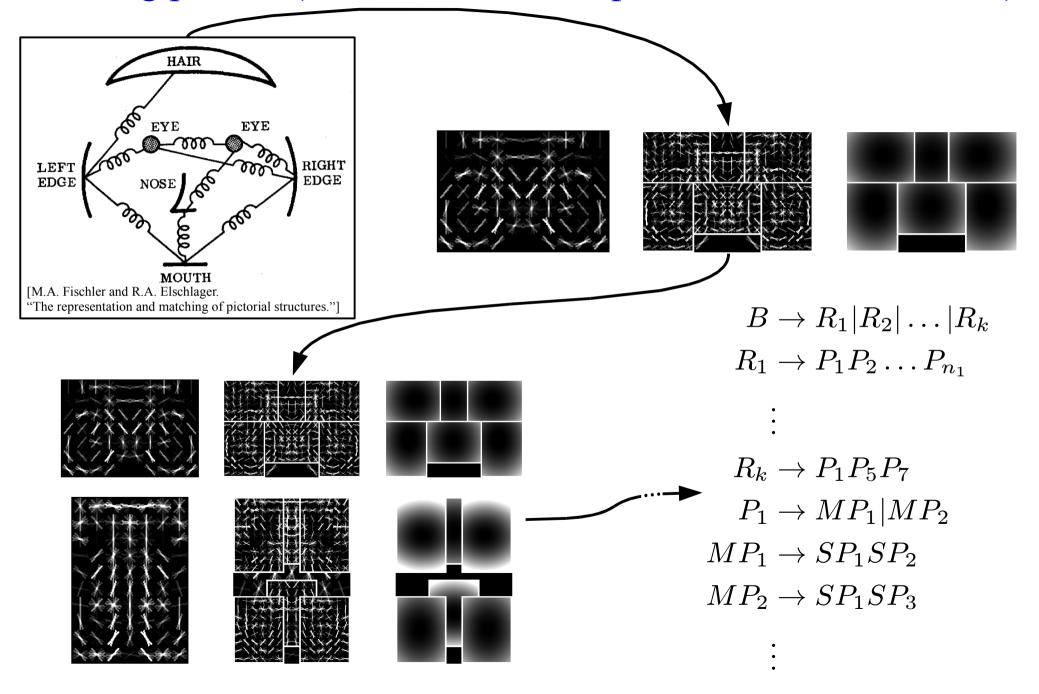
:

 $R_k \to P_1 P_5 P_7$ $P_1 \to M P_1 | M P_2$ $M P_1 \to S P_1 S P_2$

 $MP_2 \rightarrow SP_1SP_3$

:

The big picture (evolution from the pictorial structure model)



Challenges on the path to rich grammar models

1. Model initialization and training

- How do we initialize parts, subparts, mixtures of parts, shared part dictionaries?
- How do we train rich models from bounding boxes? (latent SVM)

2. Computational efficiency

- Rich model → expensive detection/inference.
- Inference must be fast enough to make rich grammar models usable in practice.
- What if we have models for 10,000 object classes?

Challenges on the path to rich grammar models

- 1. Model initialization and training
 - How do we initialize parts, subparts, mixtures of parts, shared part dictionaries?
 - How do we train rich models from bounding boxes? (latent Syfocus today:
- 2. Computational efficiency
 - Rich model → expensive detection/inference.
 - Inference must be fast enough to make rich grammar models usable in practice.
 - What if we have models for 10,000 object classes?

The problem: we need a real parsing algorithm, but still limited to a small number of filters.

Our approach: coarse-to-fine detection + heuristic best-first search

Motivation

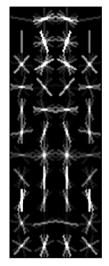
- 1. Coarse-to-fine detection (somewhat obvious)
 - i. Exploit sparseness
 - ii. Early termination of parses
- 2. Heuristic best-first search (less obvious)
 - i. Non-maximal suppression of competing parses

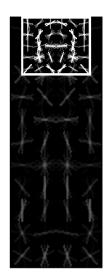
This talk: start with star models.

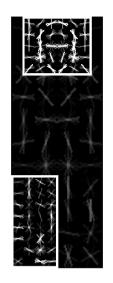
Current work: general visual grammar parsing & learning.

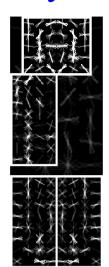
A CTF model hierarchy

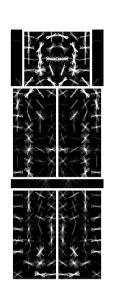
coarsest

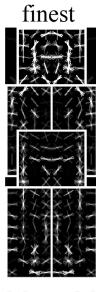












models: M_1 thresholds:

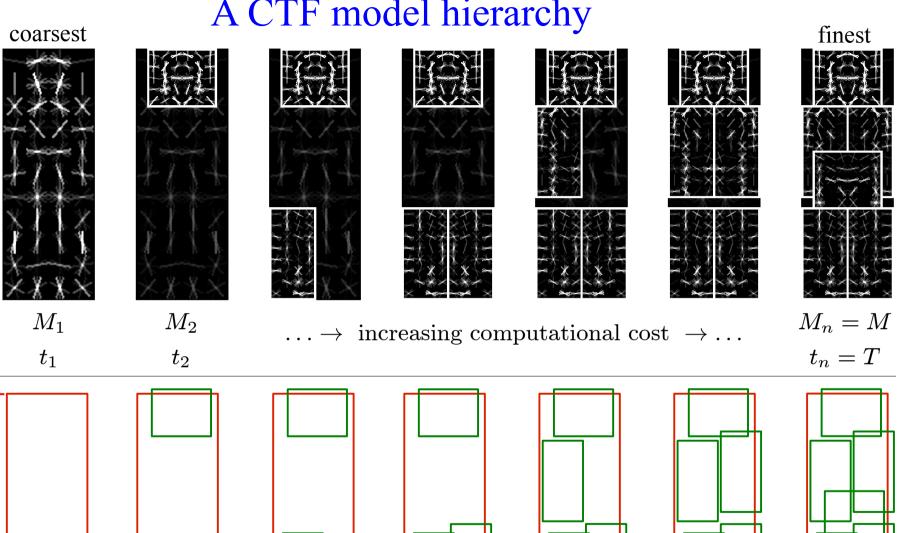
 t_1

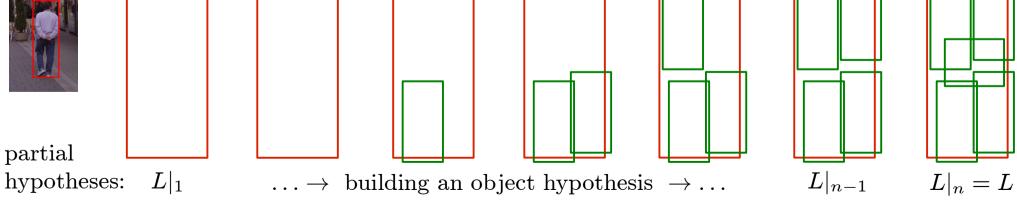
 M_2 t_2

 $\ldots \rightarrow$ increasing computational cost $\rightarrow \ldots$

 $M_n = M$ $t_n = T$

A CTF model hierarchy



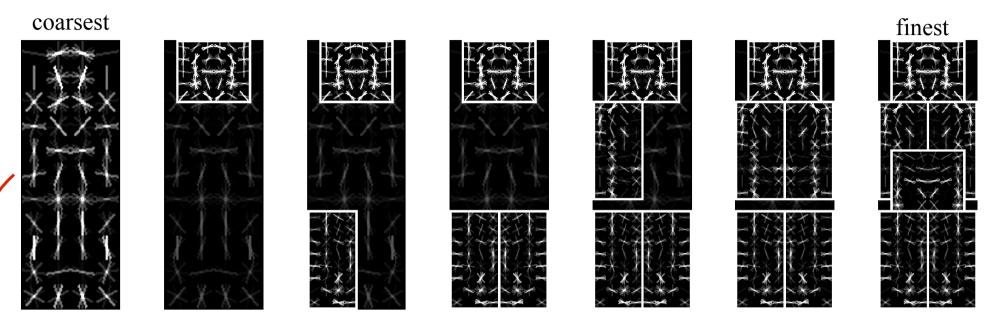


models:

thresholds:

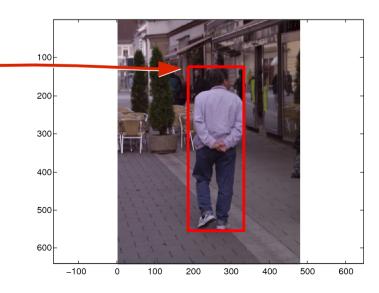
Require: $S_{M_i}(L|_i) \geq t_i$

CTF detection algorithm



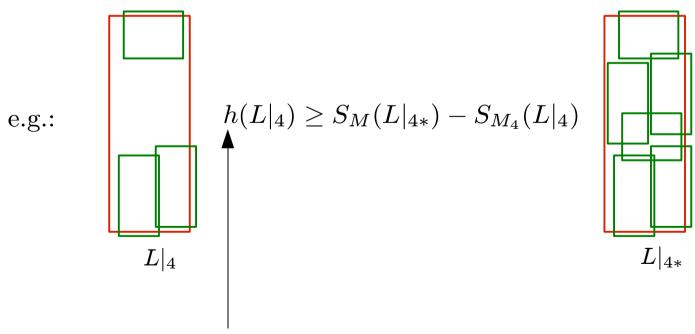
 $\ldots \to \text{continue while } S_{M_i}(L|_i) \geq t_i \to \ldots$

For each root location: apply models in coarse to fine order while above termination threshold



Now, add heuristic best-first search → "Heuristic coarse-to-fine detection"

Best-first heuristic: an upper bound on how much the score of a partial hypothesis can improve.



best-first heuristic if it holds for any pair $L|_4$ and $L|_{4*}$.

Heuristic coarse-to-fine detection algorithm

- Don't iterate over locations in feature pyramid
- Instead: priority queue of partial object hypotheses
 - Order queue by partial score + heuristic function
 - Apply non-maximal suppression on the fly \rightarrow extra pruning
 - Typically very fast if only looking for the single best detection

Heuristic coarse-to-fine detection algorithm

- Don't iterate over locations in feature pyramid
- Instead: priority queue of partial object hypotheses
 - Order queue by partial score + heuristic function
 - Apply non-maximal suppression on the fly \rightarrow extra pruning
 - Typically very fast if only looking for the single best detection

Problem:

We don't know how to select admissible heuristics that yield good best-first search order!

Solution: select inadmissible heuristics

Let (I, L) be an (image, object hypothesis) pair where $S_M(L) \geq T$.

Assume there's an unknown distribution D over an arbitrary set of (I, L) pairs.

D induces a distribution D_i over $h_i^*(L) = S_M(L) - S_{M_i}(L|_i)$, where $(I, L) \sim D$.

Let \mathcal{H}_i be a sample from D_i .

Claim:

$$\hat{h}_i = \max\left(\mathcal{H}_i\right)$$

for i = 1, ..., n is a "good" rule.

Theoretical justification: *Probably Approximately Admissible*

The rule is *good* in the sense that we can provide a PAC-like bound on the error rate.

Let
$$err(\hat{h}_1, ..., \hat{h}_n) = P_{(I,L) \sim D}(\hat{h}_i < h_i^*(L))$$
 for any $i = 1, ..., n$.

Theorem

Using the rule $\hat{h}_i = \max(\mathcal{H}_i)$, for fixed ϵ and δ ,

if
$$|\mathcal{H}_i| > \frac{n}{\epsilon} \ln \frac{n}{\delta}$$
, then $P(err(\hat{h}_1, \dots, \hat{h}_n) > \epsilon) < \delta$.

That is, the heuristic is "approximately" admissible with high probability.

Choosing inadmissible coarse-to-fine thresholds

- 1. Similar procedure as for heuristics.
- 2. Thresholds t_i are lower bounds on $S_{M_i}(L|_i) \implies \min \text{ rule.}$
- 3. Probably approximately admissible theorem applies again.

Justification of the standard trick: pick thresholds that yield a low false negative rate on training or validation data.

Equivalent to Zhang and Viola's "multiple-instance pruning."

Experimental results I: PASCAL 2007 (comp3)

We used heuristic coarse-to-fine detection in *training and testing*. Results are for two-component mixture models.

PASCAL 2007 Testing Time					
class	DP HCTF				
aeroplane	5.70h	3.86h	1.48		
bicycle	$5.79\mathrm{h}$	2.37h	2.44		
bottle	$4.54\mathrm{h}$	2.28h	1.99		
bus	$5.75\mathrm{h}$	$2.85\mathrm{h}$	2.02		
car	4.37h	$3.82\mathrm{h}$	1.15		
cow	6.09h	3.40h	1.79		
horse	6.00h	4.27h	1.41		
motorbike	6.01h	2.21h	2.72		
person	4.95h	4.45h	1.11		
sheep	4.81h	2.85h	1.69		
train	$6.59\mathrm{h}$	$2.54\mathrm{h}$	2.59		
tymonitor	9.63h	3.07h	3.13		

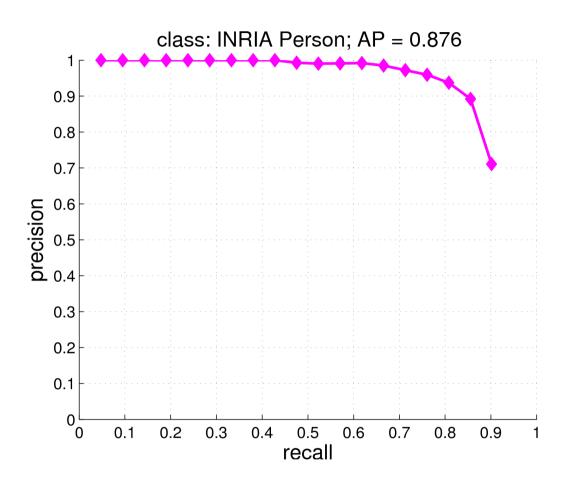
 $(\sim 5000 \text{ images on a single CPU})$

PASCAL 2007 Average Precision*					
class	DP	HCTF			
aeroplane	0.281	0.285	1.41%		
bicycle	0.558	0.548	-1.80%		
bottle	0.269	0.261	-3.07%		
bus	0.437	0.443	1.42%		
car	0.465	0.464	-0.06%		
cow	0.207	0.195	-5.93%		
horse	0.438	0.432	-1.23%		
motorbike	0.384	0.397	3.48%		
person	0.332	0.336	1.31%		
sheep	0.196	0.200	2.43%		
train	0.340	0.371	9.02%		
tymonitor	0.384	0.370	-3.84%		

(* prior to any post-processing steps)

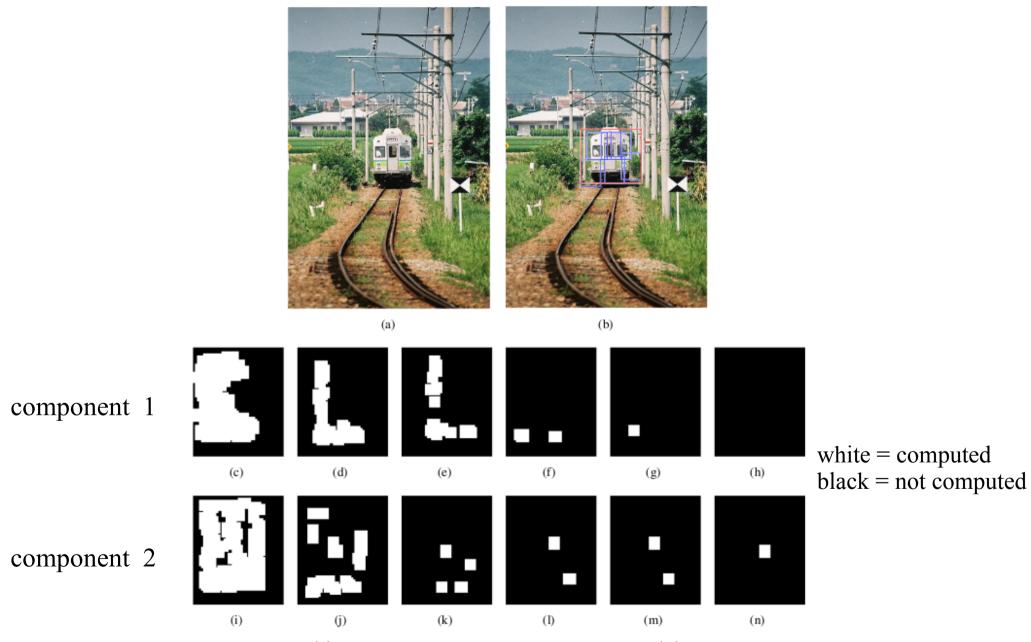
The theoretical bounds are somewhat loose. Around 200-300 examples are sufficient in practice.

Experimental results II: INRIA Person Dataset



Method DP scored AP = 0.878. Testing time = 40.2 minutes. Method HCTF scored AP = 0.876. Testing time = 15.0 minutes (2.68x faster).

Pruning efficiency: where are filter scores computed?



Computation of $m_i(l)$ for i = 2, ..., 7. The square in (g) is 11x11 HOG cells.

Pruning efficiency: by the numbers

PASCAL 2007:

	HCTF Pruning Efficiency											
M_i	aero	bike	bottle	bus	car	cow	horse	mbike	person	sheep	train	tv
1	55.8%	88.4%	58.5%	67.5%	35.3%	72.9%	51.3%	86.1%	32.8%	38.4%	75.5%	60.3%
2	11.0%	8.9%	29.2%	28.2%	39.7%	14.7%	22.9%	11.6%	19.7%	41.8%	20.2%	17.7%
3	9.7%	1.4%	9.7%	2.3%	10.9%	9.7%	16.8%	1.4%	16.3%	17.3%	2.9%	15.0%
4	9.8%	1.0%	1.6%	0.7%	6.2%	2.6%	6.7%	0.6%	14.6%	2.1%	0.9%	5.9%
5	5.3%	0.2%	0.9%	0.9%	6.4%	0.1%	1.7%	0.3%	11.6%	0.2%	0.3%	0.5%
6	8.4%	0.1%	0.0%	0.4%	0.8%	0.0%	0.5%	0.0%	3.7%	0.1%	0.1%	0.2%
7	0.1%	0.0%	0.0%	0.1%	0.6%	0.0%	0.1%	0.0%	1.3%	0.1%	0.0%	0.2%

INRIA Person:

HCTF Pruning Efficiency					
M_i	INRIA				
1	92.9%				
2	4.77%				
3	1.12%				
4	1.02%				
5	0.10%				
6	0.03%				
7	0.02%				

Some criticisms

- More complicated than parsing with dynamic programming
- Maybe a GPU implementation will be fast enough (even for 10,000 classes)?
- Loss of some robustness to occlusion (due to CTF hierarchy)
- Best-first search destroys cache coherence :-(

Conclusions and next steps

Conclusions:

- → Heuristic coarse-to-fine detection with inadmissible heuristics and thresholds works well for our mixture models.
- → Should see more significant payoffs on richer models (richer models have more discriminating filters → better pruning).
- → Still, 2-3x speedup for some classes with 2-component mixture.

Next:

- → More work is needed to successfully apply this technique to grammar models (beyond mixture models AO* search)
- → Continue progression to rich models: shared part dictionary, more than 2 levels, part-level mixtures, etc.

Thank you.

Questions?

Download source code*
for training and detection at
http://people.cs.uchicago.edu/~pff/latent/

*Code for our PASCAL 2008 system – not HCTF search or visual grammars.

Thank you.

Questions?

Download source code*
for training and detection at
http://people.cs.uchicago.edu/~pff/latent/

*Code for our PASCAL 2008 system – not HCTF search or visual grammars.

Thank you.

Questions?

Download source code*
for training and detection at
http://people.cs.uchicago.edu/~pff/latent/

*Code for our PASCAL 2008 system – not HCTF search or visual grammars.