Object Detection with Heuristic Coarse-to-Fine Search

Ross B. Girshick and Pedro F. Felzenszwalb

Department of Computer Science, University of Chicago

What's the problem?

Object detection: localize all instances of a generic object class in a real-world image.

Example: Find all bicycles in this image.

Our research focuses on a general class of deformable part models that we call visual grammars. We introduce this class with two examples.

Example 1. Multiscale star models

This simple model is a collection of templates called *filters*.

(A) root filter (B) part filters (C) deformation model The root filter captures the whole object at a coarse resolution. The part filters capture local regions, such as wheels, at a higher resolution. Each part filter is anchored at a position relative to the root, but may move according to the deformation model.

Detection algorithm for star models

Optimization problem:

Find all local maxima of the model's score function $S_M(L)$, feature map above a threshold T, where $L = (l_1, \dots, l_n)$ specifies an object hypothesis in a feature pyramid.

Can be solved efficiently with dynamic programming and generalized distance transforms.

Figure: Computing $S_M(L)$ at one scale.

The algorithm is linear in the number of filters, but the constant factor is large, e.g., $\sim 250M$ floating point multiplications for a 640×480 image.

Example 2. Mixtures of multiscale star models

Mixture models can capture extreme intra-class variation.

Figure: A mixture model for two bicycle poses.

We can apply the detection algorithm for each component independently, and then take a max over components.

A mixture of multiscale star models is a special case of a much more general class of deformable object models: visual grammar models.

Visual grammar models

Visual grammars define rich deformable part models in terms of acyclic context-free grammars. For example:

Mixture model

 $R_1 \rightarrow P_1 P_2 P_3 P_4 P_5 P_6$ $R_2 \rightarrow P_7 P_8 P_9 P_{10} P_{11} P_{12}$

Grammar models generalize deformable object models in a number of important ways:

Example grammar

 $C \to SC_1 | \dots | SC_k$ $SC_1 \rightarrow P_1P_2 \dots P_{n_1}$ $SC_k \rightarrow P_1P_5P_7$ $P_1 \rightarrow MP_1 | MP_2$

 $MP_1 \rightarrow SP_1SP_2$

 $MP_2 \rightarrow SP_1SP_3$

- \triangleright an object class (C) is defined by ksubclasses (SC_i) ,
- \triangleright shared parts, e.g., a wheel (P_1) ,
- \triangleright parts modeled as mixtures (MP_i) , $head \rightarrow front \ head \ | side \ head,$
- \triangleright parts composed of subparts (SP_i). front head \rightarrow eyes nose mouth

The path to rich grammar models

It is surprisingly difficult to improve detection results by enriching models.

Three fundamental reasons:

- 1. Learning often requires judicious use of hidden or latent information (Latent SVM).
- 2. Good initialization is extremely important, but challenging.
- 3. The computational efficiency of inference must be maintained as model complexity increases.

Computational efficiency is a prerequisite for finding solutions to issues 1 & 2. Our approach: coarse-to-fine detection + heuristic best-first search.

Coarse-to-fine detection

Figure: A fixed part order defines the CTF hierarchy for a star model.

CTF detection algorithm

Heuristic coarse-to-fine detection

Observation: when computing the local maxima of a function above a threshold, best-first search allows additional pruning by applying non-maximal suppression on the fly.

Admissible best-first heuristic: upper bound how much a partial object hypothesis can improve.

$$\hat{h}_i \ge S_M(L) - S_{M_i}(L|_i)$$
 for $i = 1, \dots, n$
 $\hat{h}_n = 0$ and $S_M(L) \ge T$

Algorithm:

- 1. Reorder coarse-to-fine search with a priority queue of partial object hypotheses.
- 2. Prioritize by partial score + heuristic function.
- 3. Do non-maximal suppression for each solution.

Probably approximately admissible heuristics

Problem: we cannot efficiently determine a heuristic function that gives good performance and is admissible. **Solution:** use a *good* inadmissible heuristic function.

Let $h_i^*(L) = S_M(L) - S_{M_i}(L|_i)$ be a random variable, where L is from an unknown distribution D over $\{L \mid S_M(L) \geq T\}$.

Let \mathcal{H}_i be a sample of h_i^* .

The rule $\hat{h}_i = \max(\mathcal{H}_i)$ is a *good* in the sense that we can provide a PAC-like bound on the error rate.

Let
$$err(\hat{h}_1, ..., \hat{h}_n) = P_{L \sim D}(\hat{h}_1 < h_1^*(L) \lor ... \lor \hat{h}_n < h_n^*(L)).$$

Theorem: using the rule $\hat{h}_i = \max(\mathcal{H}_i)$, for fixed ϵ and δ ,

if $|\mathcal{H}_i| > \frac{n}{\epsilon} \ln \frac{n}{\delta}$, then $P(err(\hat{h}_1, \dots, \hat{h}_n) > \epsilon) < \delta$.

The heuristic is *probably admissible* with *high probability*.

Empirical results

Experimental results for two-component mixture models using heuristic coarse-to-fine detection with inadmissible heuristics and thresholds during testing and training on 12 of the 20 PASCAL 2007 object classes.

PASCAL 2007 Testing Time				PASCAL 2007 Average Prec.* (comp3)			
class	DP	HCTF	Speedup	class	DP	HCTF	% change
aeroplane	5.70h	3.86h	1.48	aeroplane	0.281	0.285	1.41%
bicycle	5.79h	2.37h	2.44	bicycle	0.558	0.548	-1.80%
bottle	4.54h	2.28h	1.99	bottle	0.269	0.261	-3.07%
bus	5.75h	2.85h	2.02	bus	0.437	0.443	1.42%
car	4.37h	3.82h	1.15	car	0.465	0.464	-0.06%
cow	6.09h	3.40h	1.79	cow	0.207	0.195	-5.93%
horse	6.00h	4.27h	1.41	horse	0.438	0.432	-1.23%
motorbike	6.01h	2.21h	2.72	motorbike	0.384	0.397	3.48%
person	4.95h	4.45h	1.11	person	0.332	0.336	1.31%
sheep	4.81h	2.85h	1.69	sheep	0.196	0.200	2.43%
train	6.59h	2.54h	2.59	train	0.340	0.371	9.02%
tvmonitor	9.63h	3.07h	3.13	tvmonitor	0.384	0.370	-3.84%

(* Prior to any post-processing steps, not comparable to published results.)

Conclusion: 2-3x speedup for 6 classes while maintaining good AP scores.

Example detections

References

- P. Felzenszwalb, D. McAllester, D. Ramanan. A Discriminatively Trained, Multiscale, Deformable Part Model. Proceedings of the IEEE CVPR, 2008.
- P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan. Object Detection with Discriminatively Trained Part Based Models. Under preparation, 2009.
- M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html