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ADbsStract Recently, object tracking by detection using adaptive on-line classifiers has been investigated. In this case, the tracking problem is

reduced to the discrimination of the current object view from the local background. However, on-line learning may introduce errors, which
causes drifting and let the tracker fail. This can be avoided by using semi-supervised on-line learning (i.e., the use of labeled and unlabeled
training samples), which allows to limit the drifting problem while still staying adaptive to appearance changes. In particular, this paper extends
semi-supervised on-line boosting by a particle filter to achieve a higher frame-rate. Furthermore, a more sophisticated search-space sampling,
and an improved update sample selection have been added.

Motivation

On-line supervised learning within Tracking-by-Detection may
Introduce errors into the object model and cause drifting due to the
unsupervised nature of the tracking task.

Particle Filtering

We are using the particle filter to estimate the objects location. The
particle weights are set according to the confidence of the learned
classifier at the particle locations.
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Semi-Supervised Learning

Include unlabeled data into training set to improve performance of
resulting classifier (use cluster and manifold assumption).

Dense sampling at interesting locations
Motion model helps handling temporary occlusions.
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Semi-supervised On-line Boosting (SSOB)

On-line Boosting incrementally selects suitable classifiers out of N
classifier pools and combines them to a strong ensemble H

One-Shot Training of Prior Classifier
Create virtual samples that simulate natural behaviour of the object.
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Update Patch Selection
Evaluated different methods for patch selection and their influence on
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Tracking Sylvester (from David Ross)

The label and the weight of processed training samples depend on the
combined decision of a prior classifier HP? and the on-line learned
classifier H:

Conclusion
« Label noise and jitter cause drifting

Zn(x) _ tanh (H p(x) )_ tanh (H n-l(X)) « SSOB limits drifting but also adaptivity

» Stability Plasticity Dilemma
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