

Spectral Symmetry Analysis

Michael Chertok and Yosi Keller

School of Engineering, Bar-Ilan University, Israel. Accepted for publication to PAMI.

Introduction

We present a spectral approach for detecting and analyzing rotational and reflectional symmetries in *n*-dimensions.

- ▶ The problem is formulated as a self-alignment of a set of points
- ▶ Each object is represented by a set of points $S \in \mathbb{R}^n$
- ► The self-alignment problem is formulated as a quadratic binary optimization problem
- ► The optimization problem is solved by spectral relaxation
- Symmetric objects have more than one self alignments, resulting in
- ► A multiplicity of eigenvalues whose corresponding eigenvectors hide symmetric self-alignments
- ► Geometrical constrains further improve scheme's robustness

Matching of sets and subgraphs

Consider the following alignment problem

We are given two sets of points: $S_k k = 1, 2$ and the relative distances within each set: $d_{i,j}^k i, j = 1.. |S_k|$.

Definitions

Assignment vector $x = [0 \ 1 \ 0| \ 1 \ 0| \ 0 \ 0]^T$

Assignment of a point $S_1^i \in S_1$ to a point $S_2^{i'} \in S_2$: $C_{ii'} \equiv S_1^i \to S_2^{i'}$

Assignment cost for pairs $d\left(C_{ii'},C_{jj'}\right)=d\left(d_{ij},d_{i'j'}\right)=\left|d_{ij}-d_{i'j'}\right|$

Spectral Graph Matching

Assignment affinity matrix $a_{ii',jj'} = \exp\left(-d\left(d_{ij},d_{i'j'}\right)/\sigma\right), \sigma > 0$ We can now define the total assignment affinity and maximize it:

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \mathbf{x}^T A \mathbf{x} = \arg\max_{\mathbf{x}} \sum_{i,j \in X} A_{ij}$$

It is easy to show that A is p.s.d. This is a difficult optimization problem: So Relax x

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}, \ \mathbf{x} \in \mathbb{R}$$

- $ightharpoonup x^*$ is the eigenvector ψ_1 corresponding to the largest eigenvalue λ_1
- ▶ \mathbf{x}^* is discretized into binary assignment vector $\mathbf{x}_d \in \{0, 1\}$.

Spectral Matching for Self-Alignments

- ▶ Align the set of points to itself : $S_1 \equiv S_2$
- ▶ Alignment derived from ψ_1 is trivial (each point to itself)
- For symmetric objects ψ_i , i=2..K, hide symmetric self-alignments C_i
- ► The eigengap in the graph of eigenvalue signals the symmetry order

Symmetry classification and pruning false symmetries

Geometric verification is used to classify the detected symmetry as reflectional or rotational symmetry and to prune false detections.

$$T_{rot}(x,y) = \begin{pmatrix} \cos \beta_k - \sin \beta_k & 0 \\ \sin \beta_k & \cos \beta_k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
(1)

The center of rotation X_c , is invariant under T_{rot} , and can be computed as the eigenvector of T_{tor} corresponding to the eigenvalue $\lambda = 1$

$$T_{rot}X_c=X_c. (2)$$

$$T_{ref}(x,y) = \begin{pmatrix} \cos 2\alpha_0 & \sin 2\alpha_0 & 0\\ \sin 2\alpha_0 & -\cos 2\alpha_0 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ 1 \end{pmatrix} \tag{3}$$

The points on the symmetry axis form an invariant set X_R that corresponds to the eigenspace of

$$T_{ref}X_R=X_R.$$
 (4)

- ▶ Derive correspondence map C_i from ψ_i
- \triangleright Estimate transformation matrix T_i
- ▶ If $|\det(T_i) 1| < \varepsilon \Rightarrow$ rotation detected, use (2) to find symmetry center
- ▶ If $|\det(T_i) + 1| < \varepsilon \Rightarrow$ reflection detected, use (4) to find symmetry axis
- \triangleright Otherwise, classify this C_i as false detection

Experimental Results

BioDB Benchmark

- ▶ BioID dataset consists of 1521 facial images with ground truth
- ▶ We detected symmetry in faces with 99.41% accuracy
- ▶ The only 9 miss detections are on the left. Examples of correct detections are on the right:

Three-dimensional symmetry

Spectral Symmetry Analysis can be applied naturally to \mathbb{R}^3 Pairwise distances $d_{ii'}$ are calculated in \mathbb{R}^3

The eigenvalues λ_i Self-alignment by ψ_2 Self-alignment by ψ_3 Self-alignment by ψ_4

