
Spectral Symmetry Analysis
Michael Chertok and Yosi Keller

School of Engineering, Bar-Ilan University, Israel.
Accepted for publication to PAMI.

Introduction

We present a spectral approach for detecting and analyzing
rotational and reflectional symmetries in n-dimensions.

I The problem is formulated as a self-alignment of a set of points

I Each object is represented by a set of points S ∈ Rn

I The self-alignment problem is formulated as a quadratic binary
optimization problem

I The optimization problem is solved by spectral relaxation

I Symmetric objects have more than one self alignments, resulting in

I A multiplicity of eigenvalues whose corresponding eigenvectors hide
symmetric self-alignments

I Geometrical constrains further improve scheme’s robustness

Matching of sets and subgraphs

Consider the following alignment problem

We are given two sets of points: Sk k = 1,2 and the relative distances
within each set: dk

i ,j i , j = 1.. |Sk | .

Definitions

Assignment vector x =
[
0 1 0| 1 0 0| 0 0 1

]T

Assignment of a point Si
1 ∈ S1 to a point Si ′

2 ∈ S2 : Cii ′ ≡ Si
1 → Si ′

2

Assignment cost for pairs d
(
Cii ′,Cjj ′

)
= d

(
dij,di ′j ′

)
=

∣∣dij − di ′j ′
∣∣

Spectral Graph Matching

Assignment affinity matrix aii ′,jj ′ = exp
(
−d

(
dij,di ′j ′

)
/σ

)
, σ > 0

We can now define the total assignment affinity and maximize it:

x∗ = arg max
x

xTAx = arg max
x

∑
i ,j∈x

Aij

It is easy to show that A is p.s.d. This is a difficult optimization problem:
So Relax x

x∗ = arg max
x

xTAx
xTx , x ∈ R

I x∗ is the eigenvector ψ1 corresponding to the largest eigenvalue λ1

I x∗ is discretized into binary assignment vector xd ∈ {0,1}.

Spectral Matching for Self-Alignments

I Align the set of points to itself : S1 ≡ S2

I Alignment derived from ψ1 is trivial (each point to itself)
I For symmetric objects ψi, i = 2..K , hide symmetric self-alignments Ci

I The eigengap in the graph of eigenvalue signals the symmetry order
The eigenvalues λi Symmetry derived from ψ2 Symmetry derived from ψ3 Symmetry derived from ψ4
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Symmetry classification and pruning false symmetries

Geometric verification is used to classify the detected symmetry as
reflectional or rotational symmetry and to prune false detections.

Trot(x , y) =

 cos βk − sin βk 0
sin βk cos βk 0

0 0 1

  x
y
1

 (1)

The center of rotation Xc, is invariant under Trot, and can be computed as the
eigenvector of Ttor corresponding to the eigenvalue λ = 1

TrotXc = Xc. (2)

Tref (x , y) =

 cos 2α0 sin 2α0 0
sin 2α0 − cos 2α0 0

0 0 1

  x
y
1

 (3)

The points on the symmetry axis form an invariant set XR that corresponds to the
eigenspace of

TrefXR = XR. (4)

I Derive correspondence map Ci from ψi

I Estimate transformation matrix Ti

I If |det (Ti)− 1| < ε⇒ rotation detected, use (2) to find symmetry center
I If |det (Ti) + 1| < ε⇒ reflection detected, use (4) to find symmetry axis
I Otherwise, classify this Ci as false detection

Experimental Results

BioDB Benchmark

I BioID dataset consists of 1521 facial images with ground truth
I We detected symmetry in faces with 99.41% accuracy
I The only 9 miss detections are on the left. Examples of correct

detections are on the right :

Three-dimensional symmetry

Spectral Symmetry Analysis can be applied naturally to R3

Pairwise distances dii ′ are calculated in R3

The eigenvalues λi Self-alignment by ψ2 Self-alignment by ψ3 Self-alignment by ψ4

0 5 10 15 20

0

5

10

i

λ i

Mail: yosi.keller@gmail.com WWW: http://www.eng.biu.ac.il/˜kellery1/results/face-analysis.html

http://www.eng.biu.ac.il/~kellery1/results/face-analysis.html

