Comba CIS

Summary

A new parameterless method for detecting matches in pairs of stereo images with virtually no false matches [1] is proposed. A very precise disparity map is provided avoiding the fattening effect. Matches are found *a contrario* and Principal Component Analysis (PCA) is used to extract a feature vector in each point. The subpixel accuracy is obtained by interpolating and minimizing the quadratic distance under Shannon conditions.

Full Control of False Matches

- Feature Extraction: Local PCA. The patch features are the PCA coefficients trained separately for patches with similar mean and variance. ADVANTAGE: More precise results in regions with lack of information (shadows and saturated regions).
- The *a contrario* model is a statistical model for image patches deriving from the Helmholtz Principle: A geometric structure is meaningful if the expected number of occurrences is very small in white noise. In our case: An empirical background model is fixed from the images. The relevant matches are detected as rare events for this model.
- Let B_q be a block in the reference image. The empirical probability that an observed block $B_{q'}$ in the secondary image be similar to B_q for the feature i is

$$\widehat{p^i(q,q)} = 2 \cdot |H_i(q) - H_i(q')|,$$

where H_i is the cumulative histogram of the principal components coefficients for the secondary image.

- The Number of False Alarms (NFA) is the expected number of appearances of the match (q,q^\prime) :

$$NFA_{q,q'} = N_{test} \cdot \prod_{i=1}^{N} p_{q,q'}^{i}$$

where N_{test} is the number of matches to be tested, N is the number of principal components considered and $p_{q,q'}^i$ is a quantification of $\widehat{p_{q,q'}^i}$ and is imposed to be non-decreasing in i.

- A match (q, q') is ϵ -meanigful when $NFA_{q,q'} < \epsilon$.

Theorem 1. Under the a contrario assumption that all principal components are independent, $\mathbb{E}\#\{\varepsilon - meaningful\ matches\} \leq \varepsilon$.

CAUSE OF FALSE MATCHES	PROPOSED SOLUTIONS
Occlusions, moving objects and noise	a contrario model
Poor textured regions	Local PCA
Stroboscopic effects	Self-similarity threshold

Subpixel Accuracy:

• Once a meaningful match have been found in x_0 its disparity is refined.

$$\mu^{d}(x_{0}) := \underset{\mu \in \mathbb{R}}{\arg \min} \ e_{x_{0}}^{d}(\mu), \quad e_{x_{0}}^{d}(\mu) := \|\tau_{\mu}u - \tilde{u}\|_{\varphi_{x_{0}}}^{2},$$

where $\langle u, v \rangle_{\varphi_{x_0}}$ is the weighted discrete scalar product and $\|\cdot\|_{\varphi_{x_0}}$ the corresponding weighted norm. We write $\tau_{\mu}u(x) = u(x + \mu)$, and $\varphi_{x_0} = \varphi(x - x_0)$ is a symmetric and normalized window in a compact support (e.g. prolate).

Theorem 2. Assuming that $\tilde{u}(x) = u(x + \varepsilon(x)) + n(x)$ where the noise $n \sim N(0, \sigma)$. Then

$$\mu^{d}(x_{0}) - \varepsilon(x_{0}) = \underbrace{\frac{\left\langle u'^{2}, \varepsilon \right\rangle_{\varphi_{x_{0}}}}{\|u'\|_{\varphi_{x_{0}}}^{2}} - \varepsilon(x_{0})}_{fattening\ error} + \underbrace{\frac{\left\langle u', n \right\rangle_{\varphi_{x_{0}}}}{\|u'\|_{\varphi_{x_{0}}}^{2}}}_{noise\ error \sim N\left(0, \frac{\sigma \|u'\|_{\varphi_{x_{0}}}^{2}}{\|u'\|_{\varphi_{x_{0}}}^{2}}\right)}_{noise\ error \sim N\left(0, \frac{\sigma \|u'\|_{\varphi_{x_{0}}}^{2}}{\|u'\|_{\varphi_{x_{0}}}^{2}}\right)}$$

Correcting the Fattening Effect

- Dilation of the size of the patch of structures with boundaries coinciding with depth discontinuities.
- PROPOSED APPROACH: Compute a new disparity map which considers the disparity computed at pixel x as a feasible disparity for a whole set of pixels: namely, all pixels in the patch with best matching gradient angle. Reject the match when the two solutions differ by more than the allowed precision.

Experiments

Simulated Pair:

Disparity. Red pixels aren't matched (rejected by the *a contrario* method or the fattening correction.)

Noise error estimation at each point. The darker the pixel, the higher the error.

SNR	Matches	Bad matches	RMSE	Predicted noise error
∞	70.6%	0%	0.023	0
357.32	63.3%	0%	0.033	0.023
125.06	41.5%	0.02%	0.058	0.065

Root Mean Squared Error for different Signal to Noise Ratios.

Lion Experiment:

Disparity map

Slanted view of the computed surface with the reference image

Stereo benchmark: The Middlebury dataset [2] provides 9 orthorectified views at uniform intervals of piecewise planar scenes. A cross-validation is done taking the central view as reference:

	Matches	Bad Matches	RMSE	Predicted noise error
Sawtooth	45.2 %	0.1 %	0.090	0.081
Venus	47.2 %	0.1 %	0.056	0.061

First image

Groundtruth

Disparity map

References

- [1] N. Sabater, A. Almansa et J.-M. Morel, *Rejecting Wrong Matches in Stereovision*. CMLA preprint 2008-28.
- [2] Middleburry dataset. http://vision.middlebury.edu/stereo/.