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IntroductionIntroduction
Recent advances in biophotonics have enabled optical biopsy techniques for cancer surveillance. The non-invasive nature of these techniques, however, entails the difficultyRecent advances in biophotonics have enabled optical biopsy techniques for cancer surveillance. The non-invasive nature of these techniques, however, entails the difficulty

of identifying previously visited biopsy locations. This work presents a novel wide baseline matching approach for endoscopic images of deformable soft tissue. The task of

matching affine invariant image regions is modeled in a Markov Random Field (MRF) framework. The proposed model incorporates appearance based region similarities as

well as spatial correlations of the regions. In particular, a geometric constraint is introduced that is robust to large scale change present in endoscopy and to a large degree

of tissue deformation. The performance of the method as compared to the existing state-of-the-art is evaluated on both in-vivo and simulation datasets with varying levels of

visual complexities.

MethodsMethods
1. Region Detection and Description: Affine covariant regions are detected 5. Pair-wise Costs: In this work we propose a flexible geometric constraint based

p q
qlpl

p p pA R Ms= ⋅ ⋅

q q qA R Ms= ⋅ ⋅ R ps qs

1. Region Detection and Description: Affine covariant regions are detected

independently on both images using the anisotopic region detector [1]. For

viewpoint invariant description, each elliptical region is mapped onto a circular

patch and described using the SIFT descriptor [2].

2. Matching through Markov Random Fields: Matching the region descriptors

5. Pair-wise Costs: In this work we propose a flexible geometric constraint based

on the assumption that neighboring regions move with similar transformations. If

two neighboring regions and have corresponding regions and in the

second image, then there exist two affine transformations and
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2. Matching through Markov Random Fields: Matching the region descriptors

is modeled as the global optimization of a Markov Random Field (MRF). The

regions in the first image are defined as the nodes and the regions in the second

image as the labels of the MRF. Furthermore, a null-label is introduced to assign

to regions without true correspondence in the second image. The matching is

, where is the rotation of the local neighborhood, and

the scale factors and and the local affine transformations mapping the

elliptical regions to circles . Thus, if and are true correspondences,

then the descriptors and should be similar. For all nodes

within the local neighborhood system we define the geometric constraint to be:
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to regions without true correspondence in the second image. The matching is

computed by finding the maximum a posteriori estimate for optimum labelling.

3. Unary Costs: Photometric similarities between the node and the label regions

are evaluated by defining the cost of assigning the label to the node to be the

angle between the SIFT descriptors normalized by the maximum possible angle. The final pair-wise costs are defined as:
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Furthermore, a null-cost function is introduced defining the cost of not matching

a region (assigning the null label ). The motivation is that not matching a region

with a strong matching candidate should have a higher cost than a region with a

weak matching candidate. Thus, the unary costs are defined as:

The final pair-wise costs are defined as:
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αwhere is the factor regulating the trade-off between the quality and the numberwhere is the factor regulating the trade-off between the quality and the number

of matches.

4. Neighbourhood Systems:
• Global neighborhood system: In the context of the matching problem each

region is allowed to have at most one correspondence in the second image.

This uniqueness constraint is included into the energy function using a fully Fig. 1. a) Viewpoint invariant region description. b) Unary costs c) The proposed pair-wise costs. This uniqueness constraint is included into the energy function using a fully

connected graph of nodes and defining the pair-wise cost of assigning same

label to two nodes to be infinite.

• Local neighborhood system: We further define a local neighborhood system

for both, nodes and the labels to apply geometric constraints within a local

6. MAP Labelling: Finally, the maximum a posteriori estimate of the MRF labelling

is computed by minimizing the final energy function
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ResultsResults ConclusionConclusion

for both, nodes and the labels to apply geometric constraints within a local

region. Therefore, each region is connected to other regions within a distance

threshold: using Belief Propagation.
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ResultsResults
The performance of the proposed method is evaluated on

4 in-vivo and 4 simulation datasets and compared to three

descriptor matching strategies evaluated in [3]; the

threshold-based (TB), nearest-neighbor (NN) and the

ConclusionConclusion

In this work, the task of wide baseline matching in

endoscopic images is investigated.

A specific MRF model is deigned for deformable soft

The matching result of our method on in-vivo

datasets is illustrated in Fig.2.

For the quantitative analysis, the measures

recall and precision of each matching method

b)a)

threshold-based (TB), nearest-neighbor (NN) and the

nearest neighbor distance ratio matching (NNDR).

A specific MRF model is deigned for deformable soft

tissue matching. In the presented model the appearance

and geometric constraints are evaluated in the same

space (photometry), allowing for their seamless

integration into the MRF objective function.

A novel geometric constraint is introduced, which is

recall and precision of each matching method

are evaluated. For all datasets (simulation and

in-vivo) maximum recall values for the precision

interval (80%-100% inliers) is demonstrated in

Fig.3.

c) d)

A novel geometric constraint is introduced, which is

invariant to large scale change present in endoscopy

and to a large degree of tissue deformation.

Our results demonstrate the robustness of the

proposed approach for deformable wide-baseline
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Fig. 2. Matching results of the proposed MRF model on in-vivo datasets

proposed approach for deformable wide-baseline

matching towards an image-based solution for targeted

optical biopsy.
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Fig. 3. Maximum recall values for the precision interval [0.8-

1.0] (80%-100% inliers) for the simulation and in-vivo datasets.
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