Illumination Invariant Face Recognition From Single Image of Partially Shadowed Face Mihoko Shimano, Kenji Nagao, Takahiro Okabe, Imari Sato, and Yoichi Sato (The University of Tokyo)

Objective

We propose a novel method for face recognition under varying illumination conditions, using a single training image for each person.

- ♦ It is not always possible to provide a large number of training images for each person
- ♦ It is not trivial to predict appearance variation

Proposed Method

Estimating Illumination s

The illumination of a single training image is estimated by using the average shape & albedos

Reflectance Equation

The intensity under a directional light is given as:

Modeling & Rendering from a Single Image

Estimating Surface Normals Including Albedos b

MAP estimation by assuming a Gaussian distribution

$$\mathbf{b}_{MAP} = \underset{\mathbf{b}}{\arg\max} \ P(\mathbf{b}|\mathbf{i}) = \underset{\mathbf{b}}{\arg\max} \ P(\mathbf{b}) P(\mathbf{i}|\mathbf{b})$$

$$= \left[\underbrace{S\Sigma_{s}^{-} S^{T} + C_{s}^{-1}}_{\mathbf{b}} \right]^{\frac{1}{2}} \left[\underbrace{S\Sigma_{s}^{-}}_{\mathbf{b}} (\mathbf{i} - \mathbf{\mu}_{s}) + C_{s}^{-1} \mathbf{\mu}_{s}}_{\mathbf{b}} \right]$$
Input illumination

Statistics
$$\mathbf{\mu}_{b} \mathbf{b}_{MAP} S^{T} \mathbf{b} + \mathbf{\mu}_{c}$$

Estimating Error Term for Novel Lighting e(snew)

MAP estimation by assuming a jointly Gaussian distribution between e(s) and e(s_{new})

Experimental Results

Synthesized Images

Estimated Normals Including Albedos

Face recognition

Test images: CMU-PIE DB •21 images per person ·68 people

grouping pixels (6 areas)

Bootstrap images for computing statistics:

40 images per person
10 people frontal face images

Computing individual subspaces of synthesized images and searching for the closest subspace to identify this person.

Comparison with Zhou et al.'s Method(ECCV2004)

 $\mathbf{i}_{\text{new}} = S_{\text{new}}^{T} \mathbf{b}_{\text{MAP}} + \mathbf{e}_{\text{MAP}}$

Madeada		Recognition rate [%]											
Methods	f8	f9	f11	f12	f13	f14	f15	f16	f17	f20	f21	f22	average
Zhou et al.	60	72	66	76	78	77	66	56	42	63	74	71	67
Our method	96	99	96	99	100	99	99	96	81	96	99	99	97

conducted under the same condition as reported

Effectiveness of Correlation

Methods	Recognition rate [%]				
Without correlation	68				
Our method	86				

A training image illuminated from the side