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@ Segmentation - very fast bounding box selection process
with FN — 0.

o Traffic signs are designed to be well distinguishable from
background =- have distinctive colors and shapes.
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@ Recognition - based on SVM classifiers.
Multi-view

@ Global optimization - over single-view detections
constrained by 3D geometry.
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Shape-based segmentation
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Learning segmentation

Multi-view

Traffic Signs @ There are thousands of possible settings of such methods

Detection,

Recognition, e.g. different projections from color space.

and 3D
Loz hezidian @ Learning is searching for a reasonable subset of these
methods/settings.

e Optimal trade-off among FN, FP and the number of
methods.

7" =argmin FP(7) + Ky - FN(7) + K - card(7))
T

Segmentation

@ Boolean Linear Programming selects ~ 50 methods out of
10000 in 2 hours.

e Segmentation results for example:
FNgg = 1.5%, FP = 3443/ 2Mpxl image, (FN7s = 0.5%)
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e Detection: suppresion of bounding boxes which does not
look like a traffic sign.

o Haar features computed on each channel of HSI space.
o Separated shape-specific cascades of Adaboost classifiers.
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Detection

Multi-view

MUt @ Detection: suppresion of bounding boxes which does not
raffic Signs . . |
sz look like a traffic sign.

ecognition,

and 3D o Haar features computed on each channel of HSI space.
Localisation o Separated shape-specific cascades of Adaboost classifiers.

e Detection (+segmentation) results:
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missed traffic signs [%]
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Localisation @ Single view detection and recognition is just preprocessing,

the final decision is the subject of the global optimization
I over multiple views.
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@ The idea is based on Minimum Description Length, i.e.
explaining detected bounding boxes by the lowest number
of real world traffic signs.

o If detections satisfy some visual and geometrical
constraints, then all of these detections are explainable by
3D optimization one real world traffic sign.
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@ The summary of 3D results:

Radu Timofte,

|# |No.frames/TSs 3D Localised TS|FP||Recognised TS|

1 [8 x 3001 /78 75(96.2%) | 3 || 74(98.7%)
2 |8 x 6201 /71 68(95.8%) | 7 || 65(95.6%)
3|8 x 2001 /44 41(93.2%) | 2| 41(100%)
4|8 x 4001 /76 73(96.1%) | 8 || 71(97.3%)

> [8 x 15204 /269] 257(95.6%) [20] 251(97.7%) |

EI
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Results @ The average accuracy of 3D localisation is of 24.54 cm.
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@ We propose a multi-view scheme, which combines 2D and
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@ The main contributions are:

o Boolean Linear Programming formulation for fast
candidate extraction in 2D

o Minimum Description Length formulation for best 3D
hypothesis selection

e Work in progress...
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@ Questions?
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