

Multi-view Traffic Signs Detection. Recognition, and 3D Localisation

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte¹. Karel Zimmermann¹, and Luc Van Gool^{1,2}

¹VISICS Katholieke Universiteit Leuven, Belgium

> ²BIWI ETH Zurich, Switzerland

June 30, 2009

Problem definition

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

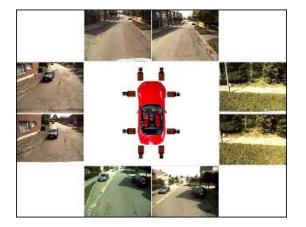
Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Single-view
Segmentation
Detection and
Recognition

Multi-view

Results


- Input: Large set of views and corresponding camera locations.
 - Output: List of detected traffic signs.

Problem definition

Multi-view Traffic Signs Detection. Recognition, and 3D Localisation

Introduction

- Input: Large set of views and corresponding camera locations.
- Output: List of detected traffic signs.

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Single-view Segmentation Detection and Recognition

Multi-view 3D optimization Results

onclusion

Single-view

- **Segmentation** very fast bounding box selection process with $FN \rightarrow 0$.
 - Traffic signs are designed to be well distinguishable from background ⇒ have distinctive colors and shapes.
- Detection Adaboost classifiers of bounding boxes.
- Recognition based on SVM classifiers.

Multi-view

 Global optimization - over single-view detections constrained by 3D geometry.

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Single-view Segmentation Detection and Recognition

Multi-view

3D optimization
Results

onclusion

Single-view

- **Segmentation** very fast bounding box selection process with $FN \rightarrow 0$.
 - Traffic signs are designed to be well distinguishable from background ⇒ have distinctive colors and shapes.
- **Detection** Adaboost classifiers of bounding boxes.
- Recognition based on SVM classifiers.

Multi-view

 Global optimization - over single-view detections constrained by 3D geometry.

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Single-view Segmentation Detection and Recognition

Multi-view 3D optimization Results

onclusion

Single-view

- **Segmentation** very fast bounding box selection process with $FN \rightarrow 0$.
 - Traffic signs are designed to be well distinguishable from background ⇒ have distinctive colors and shapes.
- Detection Adaboost classifiers of bounding boxes.
- Recognition based on SVM classifiers.

Multi-view

 Global optimization - over single-view detections constrained by 3D geometry.

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization
Results

onclusion

Single-view

- **Segmentation** very fast bounding box selection process with $FN \rightarrow 0$.
 - Traffic signs are designed to be well distinguishable from background ⇒ have distinctive colors and shapes.
- Detection Adaboost classifiers of bounding boxes.
- Recognition based on SVM classifiers.

Multi-view

• **Global optimization** - over single-view detections constrained by 3D geometry.

Color-based segmentation (thresholding)

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann and Luc Van Gool

Introduction Outline

Single-view
Segmentation

Multi-view

3D optimization

Conclusions

• Estimation of connected components of a thresholded image ($T = [0.5, 0.2, -0.4, 1.0]^{\top}$)

Original image

Thresholded image I(T)

Connected components

Segmented bound. boxes

Shape-based segmentation

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Single-view
Segmentation
Detection and
Recognition

Multi-view
3D optimizatio

- Searching for specific shapes (rectangles, circles, triangles).
- + Not all the traffic signs are locally threshold separable.
 - More time consuming, many responses for small shapes (every small region is approximatelly some basic shape).

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool

Introduction Outline

Segmentation Detection and Recognition

Multi-view 3D optimizatio Results

- There are thousands of possible settings of such methods e.g. different projections from color space.
- Learning is searching for a reasonable subset of these methods/settings.
- Optimal trade-off among FN, FP and the number of methods.

$$T^* = \underset{T}{\operatorname{arg \, min}} FP(T) + K_1 \cdot FN(T) + K_2 \cdot \operatorname{card}(T)$$

- ullet Boolean Linear Programming selects pprox 50 methods out of 10000 in 2 hours.
- **Segmentation results** for example:

$$FN_{BB} = 1.5\%, FP = 3443/ \text{ 2Mpxl image}, (FN_{TS} = 0.5\%)$$

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool

Introduction Outline

Segmentation Detection and Recognition

Multi-view 3D optimization Results

- There are thousands of possible settings of such methods e.g. different projections from color space.
- Learning is searching for a reasonable subset of these methods/settings.
- Optimal trade-off among FN, FP and the number of methods.

$$T^* = \underset{T}{\operatorname{arg \, min}} FP(T) + K_1 \cdot FN(T) + K_2 \cdot \operatorname{card}(T)$$

- Boolean Linear Programming selects \approx 50 methods out of 10000 in 2 hours.
- Segmentation results for example:

$$FN_{BB} = 1.5\%, FP = 3443/ \text{ 2Mpxl image}, (FN_{TS} = 0.5\%)$$

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Segmentation Detection and Recognition

Multi-view 3D optimization Results

- There are thousands of possible settings of such methods e.g. different projections from color space.
- Learning is searching for a reasonable subset of these methods/settings.
- Optimal trade-off among FN, FP and the number of methods.

$$T^* = \underset{T}{\operatorname{arg \, min}} FP(T) + K_1 \cdot FN(T) + K_2 \cdot \operatorname{card}(T)$$

- Boolean Linear Programming selects \approx 50 methods out of 10000 in 2 hours.
- **Segmentation results** for example:

$$FN_{BB} = 1.5\%, FP = 3443/ \text{ 2Mpxl image}, (FN_{TS} = 0.5\%)$$

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Segmentation Detection and Recognition

Multi-view 3D optimizatio Results

- There are thousands of possible settings of such methods e.g. different projections from color space.
- Learning is searching for a reasonable subset of these methods/settings.
- Optimal trade-off among FN, FP and the number of methods.

$$T^* = \underset{T}{\operatorname{arg \, min}} FP(T) + K_1 \cdot FN(T) + K_2 \cdot \operatorname{card}(T)$$

- Boolean Linear Programming selects \approx 50 methods out of 10000 in 2 hours.
- **Segmentation results** for example:

$$FN_{BB} = 1.5\%$$
, $FP = 3443/$ 2Mpxl image, $(FN_{TS} = 0.5\%)$

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool

Introduction Outline

Segmentation
Detection and
Recognition

Multi-view 3D optimizatio Results

- There are thousands of possible settings of such methods e.g. different projections from color space.
- Learning is searching for a reasonable subset of these methods/settings.
- Optimal trade-off among FN, FP and the number of methods.

$$T^* = \underset{T}{\operatorname{arg \, min}} FP(T) + K_1 \cdot FN(T) + K_2 \cdot \operatorname{card}(T)$$

- Boolean Linear Programming selects \approx 50 methods out of 10000 in 2 hours.
- **Segmentation results** for example:

$$FN_{BB} = 1.5\%, FP = 3443/ \text{ 2Mpxl image}, (FN_{TS} = 0.5\%)$$

How does the output of **segmentation** look like?

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann and Luc Van Gool

Introductio

Single-view Segmentation

Detection as Recognition

Multi-view 3D optimizatio

. . .

Detection

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Single-view
Segmentation
Detection and
Recognition

Multi-view
3D optimization

- **Detection:** suppresion of bounding boxes which does not look like a traffic sign.
 - Haar features computed on each channel of HSI space.
 - Separated shape-specific cascades of Adaboost classifiers.
- Detection (+segmentation) results:

Detection

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool

Introduction
Outline

Segmentation
Detection and
Recognition

Multi-view

3D optimization

- **Detection:** suppresion of bounding boxes which does not look like a traffic sign.
 - Haar features computed on each channel of HSI space.
 - Separated shape-specific cascades of Adaboost classifiers.
- Detection (+segmentation) results:

How does the output of **detection** look like?

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van

Introduction

Single-view
Segmentation
Detection and
Recognition

Multi-view

3D optimization - introduction

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization

- Single view detection and recognition is just preprocessing, the final decision is the subject of the global optimization over multiple views.
- The idea is based on Minimum Description Length, i.e. explaining detected bounding boxes by the lowest number of real world traffic signs.
- If detections satisfy some visual and geometrical constraints, then all of these detections are explainable by one real world traffic sign.

3D optimization - introduction

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization

---!...!---

- Single view detection and recognition is just preprocessing, the final decision is the subject of the global optimization over multiple views.
- The idea is based on Minimum Description Length, i.e. explaining detected bounding boxes by the lowest number of real world traffic signs.
- If detections satisfy some visual and geometrical constraints, then all of these detections are explainable by one real world traffic sign.

3D optimization - introduction

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool

Introduction Outline

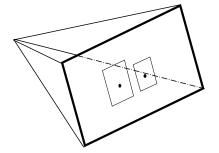
Single-view Segmentation Detection and Recognition

3D optimization

- Single view detection and recognition is just preprocessing, the final decision is the subject of the global optimization over multiple views.
- The idea is based on Minimum Description Length, i.e. explaining detected bounding boxes by the lowest number of real world traffic signs.
- If detections satisfy some visual and geometrical constraints, then all of these detections are explainable by one real world traffic sign.

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van Gool


Introduction

Single-view

Segmentation Detection and Recognition

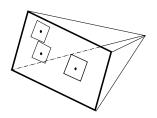
Multi-view

3D optimization

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introductio


Single-view

Detection and Recognition

Multi-viev

3D optimization Results

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introductio

Single-view

Segmentation Detection and Recognition

Multi-viev

3D optimization Results

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introductio Outline

Single-view
Segmentation
Detection and
Recognition

Multi-view

3D optimization

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introductio

Single-view
Segmentation
Detection and
Recognition

Multi-view

3D optimization

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introductio

Single-view
Segmentation
Detection and

Multi-view

3D optimization

Multi-view Traffic Signs Detection. Recognition, and 3D Localisation

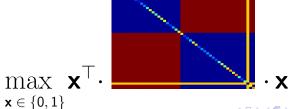
Multi-view Traffic Signs Detection. Recognition, and 3D Localisation

Multi-view Traffic Signs Detection. Recognition, and 3D Localisation

Problem formulation

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Kadu Timofte, Karel Zimmermann, and Luc Van Gool


Introduction

Single-view
Segmentation
Detection and
Recognition

Multi-view

3D optimization Results

Example with 16 views

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van

Introduction

Single-view
Segmentatio
Detection ar

Multi-vie

Example with 16 views

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Karel
Zimmermann
and Luc Van

Introduction

Single-view
Segmentation
Detection an
Recognition

Multi-viev

3D optimization

............

Results

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Segmentation
Detection an
Recognition

Multi-view
3D optimizatio
Results

onclusion

• The summary of 3D results:

#	No.frames/TSs	3D Localised TS	FP	Recognised TS
1	8 × 3001 /78	75(96.2%)	3	74(98.7%)
2	8 × 6201 /71	68(95.8%)	7	65(95.6%)
3	8 × 2001 /44	41(93.2%)	2	41(100%)
4	8 × 4001 /76	73(96.1%)	8	71(97.3%)
\sum	8 × 15204 /269	257(95.6%)	20	251(97.7%)

• The average accuracy of 3D localisation is of 24.54 cm.

Results

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Kadu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view
Segmentation
Detection and
Recognition

Multi-view
3D optimization
Results

onclusion

• The summary of 3D results:

#	No.frames/TSs	3D Localised TS	FP	Recognised TS
1	8 × 3001 /78	75(96.2%)	3	74(98.7%)
2	8 × 6201 /71	68(95.8%)	7	65(95.6%)
3	8 × 2001 /44	41(93.2%)	2	41(100%)
4	8 × 4001 /76	73(96.1%)	8	71(97.3%)
\sum	8 × 15204 /269	257(95.6%)	20	251(97.7%)

• The average accuracy of 3D localisation is of 24.54 cm.

Visualisation of 3D results in one camera

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction

Single-view
Segmentation
Detection and
Recognition

Multi-view

3D optimization Results

3D visualisation

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van

Introduction

Single-view
Segmentatio
Detection an

Multi-view
3D optimization
Results

. . .

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte Karel Zimmermann, and Luc Van

Introduction
Outline

Single-view
Segmentation
Detection and
Recognition

Multi-view 3D optimization

- Traffic Sign Detection, Recognition and 3D Localisation is a challenging problem
- We propose a multi-view scheme, which combines 2D and 3D analysis
- The main contributions are:
 - Boolean Linear Programming formulation for fast candidate extraction in 2D
 - Minimum Description Length formulation for best 3D hypothesis selection
- Work in progress...

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization

- Traffic Sign Detection, Recognition and 3D Localisation is a challenging problem
- We propose a multi-view scheme, which combines 2D and 3D analysis
- The main contributions are:
 - Boolean Linear Programming formulation for fast candidate extraction in 2D
 - Minimum Description Length formulation for best 3D hypothesis selection
- Work in progress...

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization

- Traffic Sign Detection, Recognition and 3D Localisation is a challenging problem
- We propose a multi-view scheme, which combines 2D and 3D analysis
- The main contributions are:
 - Boolean Linear Programming formulation for fast candidate extraction in 2D
 - Minimum Description Length formulation for best 3D hypothesis selection
- Work in progress...

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization

- Traffic Sign Detection, Recognition and 3D Localisation is a challenging problem
- We propose a multi-view scheme, which combines 2D and 3D analysis
- The main contributions are:
 - Boolean Linear Programming formulation for fast candidate extraction in 2D
 - Minimum Description Length formulation for best 3D hypothesis selection
- Work in progress...

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization

- Traffic Sign Detection, Recognition and 3D Localisation is a challenging problem
- We propose a multi-view scheme, which combines 2D and 3D analysis
- The main contributions are:
 - Boolean Linear Programming formulation for fast candidate extraction in 2D
 - Minimum Description Length formulation for best 3D hypothesis selection
- Work in progress...

Multi-view Traffic Signs Detection, Recognition, and 3D Localisation

Radu Timofte, Karel Zimmermann, and Luc Van Gool

Introduction Outline

Single-view Segmentation Detection and Recognition

Multi-view
3D optimization

- Traffic Sign Detection, Recognition and 3D Localisation is a challenging problem
- We propose a multi-view scheme, which combines 2D and 3D analysis
- The main contributions are:
 - Boolean Linear Programming formulation for fast candidate extraction in 2D
 - Minimum Description Length formulation for best 3D hypothesis selection
- Work in progress...

Multi-view Traffic Signs Detection, Recognition,

and 3D Localisation Radu Timofte, Karel Zimmermann,

Introduction

Outline

Single-view
Segmentation
Detection and

KALING CO.

3D optimizatio

Conclusions

• Questions?