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ABSTRACT
In this work, we combine a probabilistic model

of surface normals from shape-from-shading[1]

with a statistical model of 3D shape[2]. We

sample the Fisher Bingham FB8 distribution of

surface normals from probabilistic SfS model

using Gibbs sampling. We get surface normals

from the statistical shape model. We fit

individual normal distributions to each of these

normals and combine them to give a product

normal distribution i.e. a better model for SfS.  
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INTRODUCTION
‘To get 3D shape from a single 2D gray scale

image’ i.e. Shape-from-Shading as it is

commonly known in Computer Vision

community; has been a major research topic

from past four decades. In last forty years a

number of approaches [4] have been proposed

to improve the solution. Recently an approach

[1] based on directional statistics and belief 

propagation has been presented that have

shown better results as compared to other

currently available algorithms [2-4]. However

Smith’s work [2] has shown great improvement

over geometrical SfS algorithm [3] when a 3D

statistical model of human face shapes was

used. Inspired by the improvements shown by

incorporation of 3D statistical model we are

going to combine the probabilistic model of

SFS [1] with this 3D shape model based on the

Yale-B data base [6].

EXPERIMENT DETAILS

PROBABILISTIC SFS
Lambertian shading equation applies;

The normal direction has two degrees of

freedom i.e. elevation angle and the azimuth

angle. The elevation angle is given by the cone

constraint. This leaves one degree of freedom

per pixel. The algorithm takes a conventional

approach and uses smoothness as further

source of information.

There were two reasons to choose the FB8

distribution – firstly the multiplication of two FB8

distributions gives another FB8 distribution and

secondly the sub-model of Bingham-Mardia

distribution is used to represent the cone

constraint. Each pixel has a prior expressing

the cone constraint and the compatibility

between the adjacent pixels provide the

smoothness term. A graphical model i.e. a pair-

wise Markov random field on a grid is constru-

cted in which each node is a random variable

that represents the unknown surface orientation

of a pixel. Sum-product belief propagation is

used to determine the marginal distribution for

each node i.e. a FB8 distribution.

STATISTICAL SHAPE 

MODEL
If v            is a vector on the tangent plane to S²

at n   S² and v   0 the exponential map denoted

by       of v is the point on S² along the geodesic

in the direction of v at distance ||v|| from n. The

point on S² is denoted by          . The inverse of

the exponential map is the log map denoted by

. The log and exponential maps are given

by,

Intrinsic mean of set of points on spherical

manifold is a point that minimizes the Riemann-

ian distance to each point in the given set. This

minimization problem is solved iteratively by

gradient descent method of Pennec [7].
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SAMPLING of FB8

We use the slice sampling algorithm proposed

by A.Kume & S.G.Walker [5] to sample from the

Fisher Bingham distribution. The Fisher Bingh-

am distribution is the multivariate normal

distribution having a constraint to lie on the

surface of a sphere. If x={x0, x1, x2} is distribut-

ed according to FB distribution then |x|=1. Due

to this constrain x²={x0², x1², x2²} lies on the

simplex; so x is transformed to the (w, s) and a 

joint density of (w, s) is found using Gibbs

method by introducing latent variables (u, v, w).

Here, si=xi² and wi=xi/|xi|. When transformed 

rom x to (w0, w1, w2, s1, s2) we get the joint

density of interest.

The three latent variables (u, v, w) are

Introduced to give the joint density as,

The three latent variables are uniform and easy

to sample from; the conditional densities of w

and s are then found accordingly.

The sets A, Au, Aw and Av are formed by

inverting the inequalities involving latent

variables. 

We calculate the intrinsic mean for each pixel

location using 250 pre-aligned face shapes

using the method described above. We use five

iterations to get the intrinsic mean. The

covariance matrix Σ1 for each pixel location is

also calculated from a matrix of 250 x 3 surface

normals for that particular pixel location. We

define a normal distribution for each pixel

location(x, y) by Ω1[P1μ1, P1 ] where P1=Σ1 is

inverse of the covariance matrix μ1 is the

intrinsic mean. From SfS we get Fisher Bingh-

am distributions for each pixel, we apply the

Gibbs sampling algorithm described above and

get samples from each distribution. Through

five iterations and 250 samples per iteration

we get the intrinsic mean and covariance matrix

for each pixel location (x, y) and fit a normal

distribution Ω2[P2μ2, P2 ]. The two distributions

are then multiplied to give the most probable

surface normal μ* at pixel location (x, y).

ΩT[P* μ* , P *]=Ω1[P1μ1, P1 ] Ω2[P2μ2, P2 ]

ΩT[P * μ* , P *]=Ω[P1μ1 + P2μ2, P1 + P2 ]

μ* = (P*) (P*μ*)
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RESULTS

Preliminary results have shown improvement

over the SfS model even when the surface

normals are combined through normal

distributions. In coming months we will try to fit

some more suitable distributions and iterate

the method to get better results. 
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