The Centre for Medical Image Computing BIOPSY SITE RE-LOCALISATION WITH EPIPOLAR LINES DERIVED FROM TWO PREVIOUS ENDOSCOPIC IMAGES

Allain B.¹, Hu M.¹, Lovat L. B.², Cook R. J.³, Ourselin S.¹, Hawkes D. J.¹

b.allain@ucl.ac.uk

¹The Centre for Medical Image Computing (CMIC), University College London ²Department of Gastroenterology, University College London Hospitals, Foundation Trust and National Medical Laser Centre, Division of Surgical Sciences ³Dental Institute, Department of Biomaterials, King's College London

Abstract

Tracking biopsy sites in endoscopic images can be useful to provide a visual aid for the guidance of surgical tools, for example when endoscopic guided biopsy is required. We present a new method which re-localises a site in an image of an endoscopic sequence as the intersection of 2 epipolar lines derived from 2 previous images. The re-localisation accuracy was estimated at less than 1mm for gastroscopic data.

1. Problem

- · Context: For some endoscopies, an 'optical' in vivo histology helps detect pathologies that are invisible macroscopically before excision with forceps.
- **Problem:** The optical measurement and the excised tissue may not match, which can make the biopsy irrelevant if negative [1][2].
- **Purpose:** A biopsy site needs to be **re-localised** in subsequent video images.

2. Method

· Need:

- The **spatial transformation** from one endoscopic image where the biopsy site location is known to the target image has to be computed.
- ⇒ Computation of the transformation between endoscopic images with epipolar geometry [3].

· Idea:

- The fundamental matrix F_{13} contains information about spatial transformations between two images I1 and I3.
- A biopsy site p_{T1} known in image I1 projects onto image I3 as a line $\mathbf{l}_{I} = \mathbf{F}_{13}\mathbf{p}_{T1} = [\ l_{Ix}, \ l_{Iy}, \ l_{Im}\]^{T} \text{ so } x.l_{Ix} + y.l_{Iy} + l_{Im} = 0.$
- A second image gives a second line $l_2 = \mathbf{F}_{23}\mathbf{p}_{T2}$: the biopsy site is at the intersection of \mathbf{l}_1 and \mathbf{l}_2 [4].

· Algorithm:

4. Discussion

Advantages:

- Direct use of epipolar geometry properties without computing the rotations and the translations of the endoscope camera.
- Re-localisations at less than 1mm.
- Point precision useful for the detection of bad re-localisations.

3. Validation and Results

- Purpose: Estimate the precision and the accuracy of the re-localisation.
- Data: 9 groups of 3 images (I1-I2-I3) from 3 different patients were acquired during a gastroscopy for the diagnosis of Barrett's Oesophagus. The Field Of View (FOV) of I3 was approximately 10mm x 10mm for 3 groups and 10mm x 15mm for 6 groups.

· Method:

- Each fundamental matrix (\mathbf{F}_{13} and \mathbf{F}_{23}) is computed N times to estimate an average matrix and the covariance of the 9-vector, \mathbf{f}_{13} and f_{23} , of the matrix [5]:

$$\overline{\mathbf{F}}_{i3} = \frac{1}{N} \sum_{j=1}^{N} \mathbf{F}_{i3j} \text{ and } \Lambda_{\mathbf{f}_{i3}} = \frac{1}{N-1} \sum_{j=1}^{N} \left[\left(\mathbf{f}_{i3j} - \overline{\mathbf{f}}_{i3} \right) \left(\mathbf{f}_{i3j} - \overline{\mathbf{f}}_{i3} \right)^{\mathsf{T}} \right] , \quad i \in \{1, 2\}.$$

- The mean of the line and its covariance are computed [5]:

$$\overline{\mathbf{I}}_{i} = \overline{\mathbf{F}}_{B} \, \mathbf{p}_{\text{T}i} \; , \; i \in \left\{1, 2\right\} \text{and} \quad \mathbf{\Lambda}_{\text{I}_{i}} = \frac{\partial \mathbf{I}_{i}}{\partial \mathbf{f}_{B}} \left(\overline{\mathbf{f}}_{B}\right) \mathbf{\Lambda}_{\text{f}_{a}} \; \frac{\partial \mathbf{I}_{i}}{\partial \mathbf{f}_{B}} \left(\overline{\mathbf{f}}_{B}\right)^{\mathsf{T}} \cdot$$

- The re-localised biopsy site is the **intersection** of $\bar{\mathbf{l}}_i$ and $\bar{\mathbf{l}}_2$.
- Its precision is found by propagation of Λ_L and Λ_L .
- Its accuracy is its distance from the ground-truth.

	Patient 1				Patient 2			Patient 3	
Groups I1-I2-I3	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	Group 9
FOV of I3 (mm)	8x14	8x14	16x20	16x20	14x12	8x10	10x16	10x15	15x15
Precision (mm)	0.2	0.3	0.8	0.9	0.7	0.2	0.9	0.6	0.9
Accuracy (mm)	0.2	0.2	0.2	0.7	0.7	0.2	1.0	0.5	0.9

Possible use of this method for other endoscopic applications.

· Drawbacks:

- Need of a **good contrast** in the images for feature matching.
- Relatively large camera motions required: if the two lines form a narrow angle, the biopsy site may be badly re-localised.
- Accurate correspondence of p_{T1} and p_{T2} required.

5. References

[1] Pohl, H., Roesch, T., Vieth, et al., Miniprobe Confocal Laser Microscopy for The Detection of Invisible Neoplasia in Patients with Barrett's Oesophagus, Gut 57, pp. 1648-1653, 2008.

[2] Lovat, L.B., Johnson, K., Mackenzie, G.D. et al., Elastic Scattering Spectroscopy Accurately Detects High Grade Dysplasia and Cancer in Barrett's Oesophagus, Gut 55, pp. 1078-1083, 2006.
[3] Hu, M., Penney, G., Rueckert, D., et al.: A Novel Algorithm for Heart Motion Analysis Based on Geometric Constraints, MICCAI'08, Vol. 5241 LNCS, pp. 720-728, 2008.
[4] Allain, B., Hu, M., Lovat, L.B., et al.: Biopsy Site Re-localisation Based on the Computation of Epipolar Lines from Two Previous Endoscopic Images, MICCAI'09. Vol. 5761 LNCS, pp. 491-498, 2009.

[5] Zhengyou Z., Determining the Epipolar Geometry and Its Uncertainty: A Review, International Journal of Computer Vision, Vol. 27, No. 2, pp. 161-195, 1998.

