
International Computer Vision Summer School

VISUAL WORDS FOR 3D RECONSTRUCTION
AND POSE COMPUTATION

Bhat S., Berger M.O., Simon G., Sur F., - INRIA/LORiA/Nancy-Université, France
{bhatsrik, berger, gsimon, sur}@loria.fr

Abstract
We present Transitive Closure based visual word formation technique for

1. Extracting the three dimensional geometry from a training video sequence
2. Using it to estimate the pose of a camera in a test video sequence

Our framework permits to match points in spite of a large baseline, resulting in
a denser 3D map in (1) and in a more accurate estimation in (2), compared to the
standard keypoint matching. This also gives a handy way of getting rid of the
perceptual aliasing problem and of non-informative image points.

Visual Words Type1 and Type2
Currently, the different ways of forming the visual words can be broadly classified into two categories:

Type1 [3, 4]: The set of feature vectors ex-
tracted from the training images is divided
into a pre-determined k number of groups by
clustering. Each cluster forms a visual word
represented by the cluster center. While test-
ing, a feature vector is categorized to the word
corresponding to the closest cluster center.
Problems:
(i) Determining suitable value for k
(ii) Cannot reject a feature from unseen object.

r

Type2 [5]: A visual word is defined as a spherical region
of radius r around a feature vector. For each SIFT feature
f , the dictionary is searched for a visual word centered
within a distance of r from f . If f does not match any of
the existing words, then a new visual word centered at
f is added to the dictionary.
Problem:
Here, we can have only spherical shaped visual words.
This creates a problem when feature descriptors are ex-
tracted from smoothly varying multiple views of an ob-
ject as shown at the right.

The ’+’ mark in green color in each image shows the location
at which SIFT feature vectors x1, x2, x3, x4 were detected. We
have observed that the Euclidean distance d(xi, xi+1) < 125 for
i ∈ {1, 2, 3}, but the distance d(x1, x4) > 250. Hence for any
value r < 250, Type2 methods will categorize x1 and x4 into two
separate visual words. But, for r > 200 we have obtained many
false matches between SIFT vectors. To address this problem we
propose a different way for visual word formation based on tran-
sitive closure operation [1].

Overview of the Pose Estimation Process
Training Phase

1. Set of Visual Words V is computed from the set of SIFT[7] features S =
{f1.....fN} extracted from the training image sequence and pruning V to
retain only reliable words. We will use Range-Reducing tree structure[1] for
speeding up the visual word computation process.

2. 3D map of the scene is built through Structure from Motion (SfM)[2] using the
point-to-point matches established through visual words in V. We will obtain
a set P of 3D points of the scene, each element of which will be represented
by the set of SIFT features in the corresponding visual word in V .

Test Phase
1. Detecting the 3D points in each test image using the visual words.
2. Computing the pose using the 2D/3D correspondence.

(1) Visual word formation using transitive closure

2f

f3

f4
f5

f6

f7

8

f9

f11 f12

f10
r

f1

f

Definition: Two SIFT features x1, x2 are said to be similar if d(x1, x2) < r. This sim-
ilarity relation is reflexive and symmetric. We perform transitive closure operation
on this similarity relation on S. Each equivalence class in S obtained in this way,
represents a visual word. Hence our visual word v is represented by a set of feature
vectors {fv1 , .., fvn

} instead of a single feature vector. A vector f is said to match
with v if there exists at least one fvk

∈ v such that d(f, fvk
) < r.

For the feature vectors in the figure, the final set of visual words V will be
{ {f1, f2, f3, f4, f5}, {f6, f7, f8}, {f9, f11, f12}, {f10} }. Each visual word w ∈ V
will be the union of the spherical regions or radius r centered at the elements of w.

(2) Computation
Computation: V is initially empty. Eventually it will contain mutually exclusive
subsets of S, each one of which represents one visual word. The algorithm will
loop over each element of S. In each iteration i = 1..N it will execute following 3
steps :

1. Find the words in V which have at least one element f such that d(f, fi) < r

2. If any such words found in V , then merge all those sets together by union
operation to form a single visual word and add vector fi to it.

3. If no such set is found in V then a new element {fi} is added to V .
In ith loop, the above algorithm needs to compare fi with i − 1 vectors in step(1).
Hence, for N vectors in S it will need N(N−1)

2 number of comparisons. To reduce
the number of comparisons, we incrementally build range reducing tree structure.

(3) Data for Experiments
For our experiments we have captured two videos inside a room, Video1 for train-
ing and Video2 for testing. Video1 contains 400 images captured through hand held
camera. Video2 is captured by fixing the camera on a robotic base and moving the
base through control instructions in a circular path for one full round. The orien-
tation of the camera is fixed while capturing Video2. Video2 contains 125 images.
All the images are of size 320 (width) by 240 (height). We have used the value
r = 125 for performing transitive closure operation on Video1. While matching the
features in Video2 with the visual words obtained from training images, we have
used distance threshold 150.

Range-Reducing tree structure for Step(1) of the Visual Word computation algorithm

5

6

2

1R

r

m3

3

7
R

0

r

1

8

9

4

m2

r

m1

10

1 3

10

R
2

1 4

2

1

7

Node 2

Node 1

4

5

6
8

3

Node 3

3 9

m3

m3

m3

m2

m2

m1

9

R
0

R
1

Range reducing tree structure is similar to M-tree[6]. But, in addition we have structural
constraints that the tree should have a fixed number of levels L and fixed covering radius
or range Rl at each level l. Figure shows how new vectors m1, m2 and m3 (blue dots
with a dotted blue circle of radius r around them) will be incrementally added to a tree
structure which already contains 10 vectors (black dots numbered 1 to 10). The tree has
3 levels with range R0 (red circle), R1 (green circle) and R2 = 0. Similar to M-Trees, each
node at level l = 1, .., L− 1, contains a list of centers in which each center c has a link to a
sub-tree Tc such that all the centers c

′ ∈ Tc satisfy the condition d(c, c
′
) < Rl. The radius

at the leaf level RL is 0.

During the search fi will be added to the node Topt corresponding to the closest center
copt at level lopt beyond which the range condition d(cj , fi) ≤ Rl fails. In figure, for m2,
the condition fails in Node3 corresponding to center 3 in the rood node at level 0. Hence
it is added to Node3. While adding a new feature vector to a node at level l, a subtree
with a single child at each level till the leaf is added so that the tree structure remains
consistent. Since the range condition d(c, fi) ≤ Rl is stricter than the match condition
d(c, fi) ≤ Rl + r, we do not need to search any additional nodes for adding fi.

(4)Pruning Visual Words
/users/magrit/bhatsrik/Desktop/ThujaHome/Work/Data/TransClosure/12/01−TrainVideo/Lab−0000000185.pgm

Figure shows one of the training images and the 2D
locations in the image (marked by green ’+’) corre-
sponding to the SIFT features belonging to the vi-
sual word containing the highest number of feature
vectors. We can see that they belong to the patterns
repeatedly occurring in the environment.

In order to prevent such ambiguous matches, we
discard the visual words which appear in more than
70% of the training images. We remove the visual
words with less than 6 feature vectors since they are
likely to be unstable for reliable detection. In order
to ensure one-to-one correspondence between V and
P , we discard the visual words containing multiple
feature vectors from a single image and remove the
words which lead to multiple 3D points after SfM.

(5) Results

1
2

3
4
5

6

7

8

9

10

1
2

34
5

6
7

8

9

10

(i) Matches between two training Images

Each ’+’ mark in green color in the figure on the left shows the loca-
tion of the SIFT feature in each image. Locations identified by same
number correspond to the SIFT features belonging to the same vi-
sual word. We can see that our visual words can establish corre-
spondences between two images with huge variation in respective
camera poses. We can also observe that the two 2D locations num-
bered 6 geometrically belong to two different 3D locations. The lo-
cal image pattern around those 2D points belong to the same visual
word because they are extracted from two duplicate photographs of
the same building. Hence we still need a RANSAC step in the 3D
map building process in order to discard such ambiguous matches
which occur due to similar image patterns in non-overlapping views
of the scene.

3

9

11

12

13
14

17

19

21
22

25

29

33
34

42

4546

49 51

62 3

9

11

12

13
14

17

19

21
22

25
29

33 34
42

4546

49
51

62 (ii) 3D point detection in a test image

In the training phase, after the SfM step of our algorithm, we obtain a
set of 3D points of the scene which is in one-to-one correspondence
with the visual words in V . The Figure on the left shows the 2D
locations of the common visual words (or equivalently 3D points)
in a test image (left portion of the figure) and one of the training
images (right portion of the figure). We can see that the matches we
obtain for a test image are reliable. On average we obtain 80 2D/3D
correspondences for a test image.

(iii) SfM and Pose Estimation

In the figure on the left, the red dots show the 3D points obtained (total 2811 points) from the training
images. The pink colored contours show the camera trajectory. The circular shaped trajectory corresponds
to the test video (Video2) and the other corresponds to the train video (Video1). The blue arrows at sub
sampled camera positions show the direction of the camera orientation at those positions. The camera
orientation for Video2, as shown in the figure is expected, since the camera is moving in a circular path
while keeping a fixed orientation. Even though there are deviations in the circular path, they are very
small when compared to the distance of the 3D points to the camera positions.

(iv) Augmentation

Using the pose information computed from the training and test image sequences, we have augmented
two virtual objects on the two physical planes of the environment. The pose information for training
sequence is obtained from Bundler while building the 3D map. For test sequence, we run a RANSAC
based algorithm (POSIT[8] followed by an iterative refinement of the reprojection error) to compute pose
information. Figure below shows the results of augmenting a virtual flower vase and a virtual cupboard
at the same 3D coordinates in training and test sequences respectively. The left most figure belongs to the
train video and the other three belong to test video. We can see that our pose estimation technique on test
sequence provides good results for realistic augmentation.

References
[1] Bhat S., Berger M.O., Simon G., Sur F., Transitive Closure based visual words for point matching in

video sequence, in ICPR, 2010
[2] Snavely N., http://phototour.cs.washington.edu/bundler/
[3] Sivic J., Zisserman A., Video Google: A Text Retrieval Approach to Object Matching in Videos, in

ICCV, 2003
[4] Nister D., Stewenius H., Scalable Recognition with a Vocabulary Tree, in CVPR, 2006
[5] Angeli A., Filliat D., Doncieux S., Meyer A.J., Fast and Incremental Method for Loop-Closure

Detection Using Bags of Visual Words, in IEEE Transactions on Robotics, 2008
[6] Pavel Z., Giuseppe A., Vlastislav D., Michal B., Similarity Search: The Metric Space Approach,

Advances in Database Systems, 2005
[7] Lowe D.G., Object Recognition from Local Scale-Invariant Features, in ICCV, 1999
[8] DeMenthon D.F., Davis L.S., Model-Based Object Pose in 25 Lines of Code, in IJCV, 1995

1

