CO-RECOGNITION FOR IMAGE AND VIDEO ANALYSIS

Cho M., Shin Y.M., and Lee K.M., Seoul National University chominsu@gmail.com, shinyoungmin@gmail.com, Kyoungmu@snu.ac.kr

ComputerVisionLab Seoul National University http://cv.snu.ac.kr

Abstract

For unsupervised visual analysis of object patterns, we pose a 'co-recognition' problem of detecting and segmenting all the object-level region correspondences by considering geometric relations of visual patterns. To solve it, a multi-layer match-growing framework is proposed which explores given visual data by intralayer expansion and inter-layer merge. It applied to solve several vision problems such as identical object detection, image retrieval, symmetry detection, and action recognition.

Introduction

■ Conventional recognition settings with supervisions

- How to achieve a fully unsupervised object-level pattern discovery?
- * Recent trends in object categorization:
 Statistical topic discovery by exploring a large amount of images

Fergus et al. ICCV2005 Lee and Grauman. CVPR2009

- * Our approach from another extreme:

 Pattern discovery by **thoroughly**exploring a small amount of images
- 'Co-Recognition' problem

Unsupervised detection & segmentation of object-level region correspondences from given images by considering geometric relations of visual patterns

Related works

Co-Segmentation (Rother et al. CVPR06), Co-Saliency matching (Toshev et al. CVPR07), Common Pattern Discovery (Yuan et al. ICCV07) reduce to subproblems of co-recognition.

Key Idea

- Use initial local region matches as seeds (distracting outliers and insufficient inliers)
- Augment them by simultaneously

 Growing (Expand/Contract) into
 photometrically compatible neighbors

 Ferrari et al., ECCV04, IJCV06

Clustering (Merge/Split)
geometrically compatible matches
in a Multi-layered Bayesian framework

Each initial match has an expansion layer of overlapping regions

Proposed Algorithm

- Bayesian energy formulation consisting of
- 1. Maximality prior for expansion and merge
- 2. Geometric prior for geometric consistency

- 3. Photometric likelihood for photo- similarity
- Inference by a stochastic algorithm based on a Data-Driven Monte Carlo framework (Illustration of a case given two images)

Applications

Identical Object Detection (CVPR 2010)

■ Image Retrieval (ECCV 2008)

Image retrieval on ICCV2005 dataset

■ Symmetry Detection (BMVC 2009)

Discussion

- Many-to-many object matching across images
- Potential applications for various vision problems
- Failures in similar backgrounds due to ambiguity

References

M.Cho, Y.M.Shin, K.M.Lee, "Unsupervised Detection and Segmentation of Identical Objects", CVPR2010 Y.M.Shin, M.Cho, K.M.Lee, "Co-recognition of Video Pairs", ICPR2010

M.Cho, K.M.Lee, "Bilateral Symmetry Detection via Symmetry-Growing", BMVC2009

M.Cho, Y.M.Shin, K.M.Lee, "Co-Recognition of Image Pairs by DDMC Image Exploration", ECCV2008