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Abstract
Most automated traffic surveillance systems use inductive 
loops to estimate traffic conditions such as traffic density. 
The main drawbacks of this technology are the high 
installation and maintenance costs.  Alternatively, video 
cameras infrastructures are used to perform visual (i.e. 
human) monitoring.  Such infrastructures could be used 
to perform more complex tasks such as vehicles tracking 
and classification as well as low-cost automatic traffic 
density estimation and motion analysis. 

One of the challenges in using highway camera data for 
traffic analysis is that the external parameters of each 
camera (pan/tilt/zoom) may be changed several times a 
day by the operator, precluding pre-calibration.  Thus 
successful deployment of computer vision traffic analysis 
algorithms depends upon reliable algorithms for 
automatic camera calibration.

The work presented here is focused on the automatic 
detection and grouping of highway structure for the 
purpose of camera calibration and image rectification of 
straight and curved highways. 

We focus on the detection and grouping of lane markings 
into curvilinear chains. Unlike existing Hough-based 
methods to extract lines and estimate vanishing points, 
our method is based on a probabilistic approach where 
the lane marks are detected locally by means of cross-
correlating a set of hypothesized lane mark templates 
with the input image. Our detector produces a set of lane 
mark hypotheses including location, length and 
orientation. The problem of extracting lane marks chains 
from the set of detections is formulated as a graph 
problem in which the edges are lane mark hypotheses 
and the possible connections between them. Grouping 
cues such as proximity and good continuation are used to 
compute likelihood ratios which are used as weights for 
the connection edges.  A greedy algorithm is used to 
compute a bipartite sub-graph, and the Hungarian 
algorithm is used to compute the most probable lane 
mark chains.

Lane Marks Grouping

Results

Comments and Conclusions 
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Figures 4 and 5 show examples of an input graph G
and the grouped lane marks for one of the highway 
images .

The proposed method is expected to outperform existing 
methods, especially on highways with arbitrary 
curvatures.
Our future work plans involve fitting the extracted chains 
to conics, determine vanishing points, perform camera 
calibration, image rectification, motion analysis and 
structure recovery.

Lane Mark Detection
Let Ho and H1 be the hypotheses that an area of the 
image looks like (or does not look like) a lane mark on the 
road, and let D be an image patch being analyzed. 
Assuming an error with a normal distribution and that the 
elements of D are statistically independent, we compute 
the likelihood ratio as follows: 
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Taking the logarithm, we obtain our objective function: 
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We seek to maximize this function in order to detect 
areas of the input image that look like lane marks.

Templates.
37 highway images were hand-labelled to generate a set 
of average templates: 16 angles x  12 vertical regions.
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The output of the detector is a set               of K 
detections which includes location, angle, length and Log-
likelihood response.                      .    
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We constrain the graph G to be bipartite. This enables us 
to assign the vertices            to the sets       and         such 
that                                                        . Our goal then is 
to find the optimal  matching               .
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Weights
In order to seek for an optimal matching, we assign 
weights to the edges E’’ by making use of the proximity 
and good continuation grouping cues [1, 2].

where      is a cues vector relating the i-th and j-th edges 
and              represent distance, parallelism and co-
linearity [1]. 

E is comprised of two disjoint subsets:                   ,  
where E’ represents the detected segments and E’’
represents potential connections between vertices. We 
construct the graph G by creating what we call a locally-
connected graph. That is, by generating the set E’’ as:

where r is a radius obtained from lane marks statistics. 
Figure 4 shows an example of a graph G.

Formulation as a Graph Problem
Let               be an undirected graph in which V
represents the set of vertices and E represents the 
corresponding edges. We map the end-points of the k-th
detected lane mark (segment) to the vertices                  . 
We also map the lane marks to the set of edges E’:
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Figure 2. Example of detector’s output
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Figure 4.  Example of input graph G.

Figure 5. Example of lane marks detection and grouping.

The detector produces both, true and false detections. 
We use a spatial Greedy inhibition mechanism that 
eliminates weak detections within a rectangular 
neighbourhood of the strongest detections. The 
detections are refined with a nonlinear optimization stage 
.

Figure 1. Left: An average template. Right: Inhibition mechanism

Where the likelihood term is expressed as:
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Figure 3. Likelihood distributions for the grouping cues utilized


