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1. Abstract
We propose a top down approach to understanding indoor scenes such as bedrooms. Here we develop a generative
statistical model for rooms imaged with perspective camera, where the room boundary and objects within it are
approximated with simple non overlapping blocks. We determine fits to this model by combining several data-
driven sampling techniques. We argue our representation has advantages over previous ones since the 3D geometry
is extracted directly, and this often helps inference.

2. A generative model for indoor scene images
• We model rooms as blocks aligned in three orthogonal directions (Manhattan world)

• Blocks are right angled parallelepipeds defined in terms of width, height, length and 3D position

b = (w, h, l, x, y, z)

• Blocks approximate the 3D geometry of the room (room boundary) and the objects within it. We constrain
blocks to lie on the floor (pieces of furniture) or to be attached to a wall (windows, picture frames)

• We model an image i as a collection of blocks imaged with a perspective camera

θi = (ci, rbi, ni, bi1, .., bini , φi)

θi model parameters for image i ci camera parameters

rbi block modeling the room boundary ni number of blocks in the scene, not known a priori

bij jth block in image i φi Scene orientation with respect to world reference frame

3. Camera model
• Scene size and distance to the camera can be

determined only up to a scale factor (camera
position is kept fixed)

• Yaw is fully determined by the scene orienta-
tion φ, we assume no roll

• We constrain the camera to be inside the room

c = (f, ψ, s)
f focal length, f ∈ [0,+ inf]

ψ pitch angle,ψ ∈ [0, π2 ]

s relative scale of the world

4. Image model
• We assume image edge points Ei to be gener-

ated by the projected contours of the objects in
the scene [1]. We define the likelihood

p(i|θi) = p(Ei|θi) ≈ e
Nbg
bg e

Nmiss
miss

QKi
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Ki number of pixels in image i

e(xk) probability of detecting an edge point at pixel xk
εk εk = 1 iff the kth pixel is detected as an edge point

ebg p() of a pixel not being an edge point (background point)

emiss p() of a projected point not matched to any edge point

Nbg number of background points in the image

Nmiss number of projected model point not matched to an edge

• Edge points are treated as independent

• We find the most likely correspondece between
detected edge points and projected model
points [1].

• The probability of a good match between a de-
tected edge point xk and a projected model
pointmj is defined as

e(xk) = N (dkj , 0, σd)N (φkj , 0, σφ)

dkj distance between xk andmj along the gradient ofmj
φkj difference in orientaion between detected and projected edge

5. Inference
• To find the set of parameters that best fit the observed image, we sample from the posterior distribution

p(θi|i) = p(i|θi)p(θi)

• We combine reversible jump Metropolis Hastings samples [8] for discrete changes in the model (number of
blocks), and stochastic dynamics [7] to estimate continues parameter values in a particular parameter space.

• The room and the camera are fit simultaneously

• Block proposals are data-driven. We use detected image corners and vanishing points estimated from de-
tected line segments [2,5]

• We sample over phase space [7] using energy functionE(θi) = −log(p(θi, i)) = −log(p(θi|i)−log(p(i))

6. Results

parameter average error
f length 20%

pitch 0.12 (radian)
dataset % correct orientation

no clutter (30) 78%
clutter (100) 68 %

Top row: Average error on estimated camera parameters,
calculated on 30 images from the UCB room dataset. Bottom
row: % of pixels labeled with the correct Manhattan world
orientation [2,4,6], calculated on 30 images without hevey
clutter, and on 100 cluttered images

RMS difference between es-
timated floor boundary and
groundtruth in pixel space [2]

Estimated room models backprojected
onto the original image under the esti-
mated camera parameters. Here we fit
the room boundary alone, without objects

Top two rows: Examples of scenes where
we found good blocks for objects (in
blue). In most cases, doing so helped fit
the room boundary. Bottom row: some
additional detected frames

Two examples where adding blocks
(right) improved the fit of room the
boundary alone (left). Blocks help ex-
plain occlusions of room edges

Our results are comparable with previous work ([2],[4],[6]). Our key contribution is the top-down Bayesian approach, which is likely to prove more powerful as it integrates more

information about color, texture and lighitng, and more sophisticated object models. These directions are the topic of ongoing research.
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