LOCAL 3D SURFACE POSE ESTIMATION
BY NUISANCE RESIDUAL LEARNING
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Abstract: We present a method of estimating the pose of an imaged scene surface element provided that it can be locally approximated by its tangent plane. The approach
simultaneously learn the "nuisance residual” structure present in the detection and description steps of the SIFT algorithm allowing local perspective properties to be recovered through
a homography. The estimated local poses can be applied to non rigid surfaces, with an accuracy representative of state-of-the-art for this challenging task.

Exploiting detection nuisance. In order to obtain geometrically meaning-
ful homographies from the dataset with respect to a test Kkeypoint

Given a test image I; of one object taken from an arbitrary unknown point of
view and a reference view I, of the object from which are taken multiple views

with their homographies, we address the problem of finding the point of view
from which I; is taken. In particular our goal is to estimate the homography h ¢
between I, and I, regardless of scale and perspective distortion that possibly
affect the test image. To this end we assume that the surface of the 3D object
has smooth curvature, so that the region around a keypoint can be considered
locally planar.

Training set generation. Given a reference image I, of a planar surface, we
take a full set of images taken from different viewpoints I; and extract SIFT

keypoints in each view. Each keypoint k“g in I; 1s associated with a represen-
tation feature that accounts for SIFT description, location, main orientation,
scale at which it is detected, and the homographic transformation h;; between
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a reference view I, and I;: f§ = {(z},;),s;,0;,d;, hy;}. )

Matching and geometry consistency check. The set C' = {f,f c F
i € Ni(d")} of corresponding features of keypoint k' is retrieved as the k-
nearest neighbours N, in the space of SIF'T appearance descriptors. Outliers

k' = {(z",y"), s o', d"} and to simultaneously take into account the ”resid-
ual” invariance of the SIFT detector and descriptor algorithm, the support re-
gion of retrieved features in C' are aligned. We calculate the shifts of: position

(ui, v7) = (2" — pia, y* ,

— 11,), and scale (07 = %), and orientation (#/ = o' — o?)
between features f,f € C' and k', being (g, pty) the centroid of keypoints in
j j
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C'. The similarity transformation Sz-t = sined  olcosed o) | accounts for
0 0 1

scaling, translation and rotation and can be used to align the neighbourhoods

of features {f/} to the region of input keypoint k*, through the following homo-
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graphic transformation: hy = hi. -s%,

Learning with kernel regression. Let D € R!'?® denotes a real valued
random vector descriptor, and H € R® a real valued random output homo-
graphic transformation, with joint distribution pp p(d,h). Given a training
set consisting of N input-output pairs: {(d},h%,)1, ..., (d},h%, )N} for which the
probability of taking a specific value obeys pp m(d,h), we wish to learn the
function & : D +— H defined as h = ®&(d) = [®,(d), ..., Pg(d)| that maps
from the space of input vector descriptors to the space of homographies. Ac-
cording to this, we can define a local regression estimate of ®(d") as ®4(d"),

which minimizes the cost: L(h%, ®y(d")) = D dicct Kg(dt.,,dif)[ b — <I>e(d§)]2

and Py is some parameterized function. We used the constant function model:
®y(d) = By in which case the final form of the kernel estimation is the Nadaraya-

- A N Kx(d',d?)h?,
o(d') = 0y = Zif f{;(dt!;ﬁ) . The kernel

Ky, embeds feature descriptors of a cluster data into a vector space. Local
neighborhood metric is specified by a Gaussian kernel function centered on
the query descriptor: Ky (dt,d!) = ((27)"|Z[)2 exp~3(@—4)"27(d{~d") yhere
=N (d] —dY) - (df —dY)T.

Watson weighted average: h, =

Experimental Results: Several experiments were performed in order to assess the effectiveness of the method and compare it against “Leopar” and “Caspar” [1] [2]. In the first set
of experiment we compare the average overlap between the quadrangles obtained with our method and those obtained using the ground truth homography (Fig. 1). Similarly to “Leopar” this
overlap 1s very close to 100% for our method. The second set shows the comparison of the mean reprojection error for the quadrangle corners (Fig. 2). The error of the patch corner is less
than one pixel in average and outperforms other methods. In the last set we prove the stability of our method with respect to the number of multiview descriptor-homography pairs used in the
Kernel based regression (Fig. 3). Error bars show that we obtain a mean reprojection error of less than 1 pixel over almost the range from 30 to 250 descriptors. It also shows that the
minimum error 1s obtained in the range from 140 to 165 descriptor-homography pairs. Our current implementation runs at about 15 frame per second using 400.000 features in the database
and extracting about 200 SIFT keypoints in the input images, on a standard notebook with an Intel Centrino Core Duo with 2.4GHz and 3Gb RAM. The average times for the most expensive
steps are shown 1n the table and compares favorably with state-of-the-art methods.
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