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Abstract

Stopped object detection is a relevant step for computer vision applications and mainly in real-time vision systems where processing time is a challenging issue. 
We propose a dual background approach for detecting stopped objects based on a neural background model capable of learning from past experience and efficiently 
detecting stopped objects against light variations, shadows, etc. 
In our approach neurons are organized as a 2D flat grid on CUDA, a SIMD technology for high-performance parallel computing on NVIDA GPUs. Achieved results show 
high detection accuracy and parallel efficiency.

1. Construct 2 separate models
• Long-term model B L: usual background model adopted for moving object detection, modeling the scene background without moving objects
• Short-term model BS: contains temporally static background elements, including moving objects that have been excluded by B L

2. Compare each sequence frame It with the 2 models and compute 2 foreground binary masks
• Long-term foreground mask F L: contains stopped and moving objects
• Short-term foreground mask F S: contains only moving objects

3. For  each pixel compute an evidence score by applying a set of hypotheses on the foreground masks

Dual Background Approach
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Neural Self Organizing Background Model

The background model constructed and maintained in SOBS algorithm, here adopted 
for both the long-term and the short-term backgrounds, is based on a self organizing 

neural network organized as a 2-D flat grid of neurons [Maddalena & Petrosino, TIP’08].
Each neuron computes a function of the weighted linear combination of incoming 
inputs, with weights resembling the neural network learning, and can be therefore 
represented by a weight vector obtained collecting the weights related to incoming 

links.

1. For each pixel x, build a neuronal map consisting of n xn weight vectors all represented in HSV color space

– Each of the n2 weight vectors bt
i(x) is a 3D vector initialized to the corresponding pixel components of first 

sequence frame Io:
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Reinforcement of center pixel’s model and of 

the model of pixels adjacent to sample x

(adjacent pixels move accordingly)
Gaussian weights

2.  By subtracting the current Image It from the background model Bt at each subsequent time instant t, every 
pixel x of It is compared to current pixel weight vectors (bt

1(x), …, bt
L(x)) to determine the weight vector 

bt
BM(x)=Bt(z) that best matches it according to a metric d(⋅) :

Cuda Programming Model

Registers

Per thread
Data lifetime = thread lifetime
Local memory
Per thread off-chip memory (in device DRAM)

Data lifetime = thread lifetime
Shared memory
Per thread block on-chip memory
Data lifetime = block lifetime
Global (device) memory

Accessible by all threads as well as host (CPU)
Data lifetime = from allocation to deallocation
Host (CPU) memory
Not directly accessible by CUDA threads

Memory Model
SIMT Architecture

( Single Instruction Multiple Thread )

3. Weight vectors are updated in a neighborhood of best matching neuron (adaptivity of the model).

Updating the model Bt in a neighborhood Nz

• Bt
L is updated according to (1)    

in a selective way, only if ( ) ( )( ) ε<x,x t
BM
t Ibd

Background model adapts to scene modifications 

without introducing the contribution of pixels not 

belonging to the background scene

• Bt
S is updated according to (1) 

in a non selective way, with 
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Quick inclusion of moving and temporarily static 

background elements that have been excluded 

by the long-term model

4.  For the purpose of the double background approach to stopped object detection:

Parallel Scheme

Given a sequence image

consisting of M x N  pixels, 

and fixed the number of 

threads per block thx x  thy 

We generate a grid of blocks 

We generate a grid of

blocks 

to calculate evidence

image E

i-LIDS’07 dataset - stopped 
vehicles in no parking areas
[ftp://motinas.elec.qmul.ac.uk/pub/iLids]:

•Stationary threshold: τ=1500

•Strong illumination variations 
(clouds)
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εεεεDSeq. Event GT DBSOBS εεεε DBSOBS A εεεεA B εεεεB C εεεεC E εεεεE

PV-easy Start 02:48 02:44 4 02:48 0 02:46 2 02:52 4 02:52 4

“ End 03:15 03:20 5 03:19 4 03:18 3 03:19 4 03:16 1

PV-medium Start 01:28 01:28 0 01:28 0 01:28 0 01:41 13 01:43 15

“ End 01:47 01:52 5 01:55 8 01:54 7 01:55 8 01:47 0

PV-hard Start 02:12 02:12 0 02:12 0 02:13 1 02:08 4 02:19 7

“ End 02:33 02:34 1 02:36 3 02:36 3 02:37 4 02:34 1

Total err 15 15 16 37 28

A [Boragno et al., Proc. AVSS 2007]

B [Guler et al., Proc. AVSS 2007] 

C [Lee et al., Proc. AVSS 2007]

D [Porikli et al., EURASIP JASP 2008]

E [Venetianer et al., Proc. AVSS 2007] Speedup 

The G-80 architecture is built around a scalable array of multithreaded SMs (Streaming Multiprocessors).
Current GPU implementations range from 768 to 12,288 concurrently executing threads.

•When a CUDA program on the host CPU invokes a kernel grid, the CWD
(Compute Work Distribution) unit numbers the blocks of the grid and begins 
distributing them to SMs with available execution capacity

•The threads of a thread block execute concurrently on one SM

As thread blocks terminate, the CWD unit launches new blocks on the 
vacated multiprocessors.

•An SM consists of 8 scalar SP (Scalar Processor) cores, two SFUs (Special 
Function Units) for transcendental functions, an MT IU (Multi-Threaded 
Instruction Unit), and on-chip shared memory

•The SM maps each thread to one SP scalar core, and each scalar thread 

executes independently with its own instruction address and register state 

•The SM SIMT unit creates, manages, schedules, and executes threads in 
groups of 32 parallel threads, calledwarps

•At every instruction issue time, the SIMT unit selects a warp that is ready 
to execute and issues the next instruction to the active threads of the warp

82x7.1 ms40 x 3020 x 16

72x7.99ms80 x  3016 x 16

73x7.94ms160 x 608 x 8

45x12.91ms160 x 1208 x 4

SpeedupTime
Grid size

(in blocks )

Number of 
threads x  
block

• Serial implementation:
Intel Core i7 CPU at 2.67GHz 543ms per frame

• Parallel implementation: 
Tesla C1060 (30 SMs)

ττττ stationary threshold: minimum number of consecutive frames after which a pixel is classified as static

k decay factor: determines how fast the system should recognize that a stopped pixel has moved again
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Update Models

Foreground 
Compare

Calibrate Models

Init Models

•The SM creates, manages, and executes up to 768 concurrent threads in hardware with zero scheduling overhead

CPU processing

CPU processing

GPU processing

Pixel-level parallelism

GPU processing

Pixel-level parallelism

GPU processing

Pixel-level parallelism

GPU processing

Pixel-level parallelism
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CPU-GPU
processing

DBSOBS [Gemignani,Maddalena & Petrosino, submitted to UCHCP 2010)]
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Time measurements for the on-line phase for

AB-Easy sequence:
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We split G1 into 2 subgrids
GS ,GL of blocks: 

• GS processes the short-

term background model Bt
S

• GL processes the long-
term background model Bt

L

Et(x)

For t=Kinit+1, Lastframe

For t=1, Kinit

Increasing the block size and maintaining a large number of blocks 
we observe an improvement in performance


