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[ Abstract ]

Stopped object detection is a relevant step for computer vision applications and mainly in real-time vision systems where processing time is a challenging issue.

We propose a dual background approach for detecting stopped objects based on a neural background model capable of learning from past experience and efficiently
detecting stopped objects against light variations, shadows, etc.

1In our approach neurons are organized as a 2D flat grid on CUDA, a SIMD technology for high-performance paralle/ computing on NVIDA GPUs. Achieved results show
high detection accuracy and parallel efficiency.

[ Dual Background Approach

image
sequence

1. Construct 2 separate models
¢ Long-term model B usual background model adopted for moving object detection, modeling the scene background without moving objects
* Short-term model £ contains temporally static background elements, including moving objects that have been excluded by B+ 5

2. Compare each seq e frame I, with the 2 models and compute 2 foreground binary masks
¢ Long-term foreground mask F*: contains stopped and moving objects
« Short-term foreground mask £: contains only moving objects D“a:;i:j‘e':?;;““d
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[ Neural Self Organizing Background Model ]
segmentation of
The background model constructed and maintained in SOBS algorithm, here adopted |~ =y stopped objects
for both the long-term and the short-term backgrounds, is based on a self organizing } ~ g
neural network organized as a 2-D flat grid of neurons [Maddalena & Petrosino, TIP'08].
!Each neuron cqmputes a fun'ctlon of the weighted linear gombmanon of incoming | o [ Cuda Programming Model ]
inputs, with weights resembling the neural network learning, and can be therefore
represented by a weight vector obtained collecting the weights related to incoming The G-80 architecture is built around a scalable array of multithreaded SMs (Streal:ning Multiprocessors).
links Current GPU implementations range from 768 to 12,288 concurrently executing threads.
. NVIDIA Tesla GPU with 112 Streaming Processar Cores.
1. For each pixel x; build a neuronal map consisting of 77 xn7 weight vectors all represented in HSV color space «When a CUDA program on the host CPU invokes a kernel grid, the CWD T
— Each of the 7”2 weight vectors 5{x) is a 3D vector initialized to the corresponding pixel components of first ((_Zorr_1put_e Work Distributior!) unit pumbers me_blocks of_the grid and begins
sequence frame I; distributing them to SMs with available execution capacity
bx)=1,(x), i=1,..,n° sThe threads of a thread block execute concurrently on one SM
) . As thread blocks terminate, the CWD unit launches new blocks on the
2. By subtracting the current Image Z from the background model 5, at each subsequent time instant £ every vacated multiprocessors.
pixel xof Z,is compared to current pixel \_Neight vectors (bA(X), ..., bXX)) to determine the weight vector
bf(x)=5(2) that best matches it according to a metric o) : *An SM consists of 8 scalar SP (Scalar Processor) cores, two SFUs (Special
(b7 (x),1,(x))= min_d(b/(x), 1,(x)) Function Units) for transcendental functions, an MT IU (Multi-Threaded
i=L.n? ’ Instruction Unit), and on-chip shared memory

HSV colour space : 1(x,)= (1, 5,,v,), 1(x,)=(h,,5,,v,) d(1(x,),1(x,))=|(v,s,costh,),v,s,sin(h, )v,)-v,s,costh, ),v,s,sin(h, ),v, )| = =1 B
3. Weight vectors are updated in a neighborhood of best matching neuron (adaptivity of the model). +The SM creates, manages, and executes up to 768 concurrent threads in hardware with zero scheduling overhead

Updating the model B, in a neighborhood A, SIMT Architecture
P g ¢ g * Reinforcement of center pixel’s model and of ( Single Instruction Multiple Thread ) Memory Model

—(1_ the model of pixels adjacent to sample x "
B (y)=(-al, 208 y)+aly, 2 x), VyeN, @)= o —— «The SM maps each thread to one SP scalar core, and each scalar thread e
Gaussian weights executes independently with its own instruction address and register state e
memory
a(y,2)=16r-2) v.= mr B.e[01] staly,z)elor] «The SM SIMT unit creates, manages, schedules, and executes threads in
groups of 32 parallel threads, called warps SLELC Ry

4. For the purpose of the double background approach to stopped object detection: —
» ) Background model adapts to scene modifications o = *At every instruction issue time, the SIMT unit selects a warp that is ready jSloball{tiev]ce)|me mory]
* Btis updated according to (1) > without introducing the contribution of pixels not m E to execute and issues the next instruction to the active threads of the warp

in a selectiveway, only if d(b2"(x),1,(x))<&  belonging to the background scene Host (CPU) memory

—
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Input: pixel x in sequence frame I,, = 0, LastFrame e 3 and fixed the number of
— ]

% Output: aggregated evidence score E, (x) 1 O 2xmxnxn?) GPU processing 6 [ exmyen , min threads per block ¢, x th,
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for t=Kinit+1, LastFrame I—'—I
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[ Speedup ]

Time measurements for the on-line phase for

o Serial implementation:
T || S| O [PESCm| A G D @] @ |« £ | = Intel Core 17 CPU at 2.67GHz 543ms per frame 0
PV-easy | Start |02:48| 02:44 4 02:48| 0 | 02:46 | 2 | 02:52 | 4 |02:51| 3 |02:52)| 4 ':;,'r"e':;;;f Grid size ime -
" End |03:15] 03:20 5 [03:19] 4 | 03:18 | 3 | 03:19 | 4 |03:13| 2 |03:16] 1 « Parallel implementation: Lo (in blocks)
PV-medium| Start |01:28| 01:28 0 01:28| 0 01:28 0 01:41 | 13 | 01:33 5 01:43 | 15 Tesla C1060 (30 SMS) 8x4 160 x 120 12.91ms 45x
" End |01:47| 01:52 5 |o1:55 8 | 01:54 | 7 | 01:55 | 8 |01:50| 3 |01:47| 0 8x8 160 x 60 7.94ms 73x
PV-hard | Start [02:12 02:12 0 [02:12| 0 | 02:13 | 1 | 02:08 | 4 [02:13| 1 [02:19]| 7 16x 16 80x 30 7.99ms 72x
" End [02:33] 02:34 1 J02:36] 3 | 02:36 | 3 [ 02:37 | 4 [02:32] 1 [o02:34] 1 2016 201X30 ZE1ins, 82x
ot 15 15 16 374 23 Increasing the block size and maintaining a large number of blocks

we observe an improvement in performance
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