

NEURAL DUAL BACKGROUND MODELING FOR REAL-TIME STOPPED OBJECT DETECTION

Gemignani G., Maddalena L., Petrosino A.

Abstract

Stopped object detection is a relevant step for computer vision applications and mainly in real-time vision systems where processing time is a challenging issue. We propose a dual background approach for detecting stopped objects based on a neural background model capable of learning from past experience and efficiently detecting stopped objects against light variations, shadows, etc.

In our approach neurons are organized as a 2D flat grid on CUDA, a SIMD technology for high-performance parallel computing on NVIDA GPUs. Achieved results show high detection accuracy and parallel efficiency.

Dual Background Approach

1. Construct 2 separate models

- Long-term model B^{\perp} : usual background model adopted for moving object detection, modeling the scene background without moving objects Short-term model B^{\perp} : contains temporally static background elements, including moving objects that have been excluded by B^{\perp}
- 2. Compare each sequence frame $\boldsymbol{I_t}$ with the 2 models and compute 2 foreground binary masks
 - Long-term foreground mask F^{i} : contains stopped and moving objects Short-term foreground mask F^{s} : contains only moving objects
- 3. For each pixel compute an evidence score by applying a set of hypotheses on the foreground masks

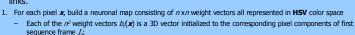
$$\boldsymbol{E}_{t}(\boldsymbol{x}) = \begin{cases} min(\tau, \boldsymbol{E}_{t}(\boldsymbol{x}) + \Delta t) & \text{if } (\boldsymbol{F}^{L}(\boldsymbol{x}) \wedge ! \boldsymbol{F}^{S}(\boldsymbol{x})) \\ max(0, \boldsymbol{E}_{t}(\boldsymbol{x}) - \boldsymbol{k}) & \text{if } (\boldsymbol{F}^{L}(\boldsymbol{x}) \vee \boldsymbol{F}^{S}(\boldsymbol{x})) \end{cases}$$

au stationary threshold: minimum number of consecutive frames after which a pixel is classified as static

k decay factor: determines how fast the system should recognize that a stopped pixel has moved again

Neural Self Organizing Background Model

The background model constructed and maintained in **SOBS** algorithm, here adopted for both the long-term and the short-term backgrounds, is based on a self organizing neural network organized as a **2-D flat grid of neurons** [Maddalena & Petrosino, TIP'08]. Each neuron computes a function of the weighted linear combination of incoming inputs, with weights resembling the neural network learning, and can be therefore represented by a weight vector obtained collecting the weights related to incoming



$$b_0^i(\mathbf{x}) = I_0(\mathbf{x}), \quad i = 1, ..., n^2$$

2. By subtracting the current Image I_t from the background model B_t at each subsequent time instant t_t every pixel \mathbf{x} of I_t is compared to current pixel weight vectors $(b_t^{P}(\mathbf{x}), ..., b_t^{P}(\mathbf{x}))$ to determine the weight vector $b_t^{BV}(\mathbf{x}) = B_t(\mathbf{z})$ that best matches it according to a metric d_t :

$$d(b_t^{BM}(\mathbf{x}), I_t(\mathbf{x})) = \min_{t=1}^{n} d(b_t^{I}(\mathbf{x}), I_t(\mathbf{x}))$$

 $\textbf{HSV colour space}: \ I(\boldsymbol{x}_i) = (h_i, s_i, v_i), I(\boldsymbol{x}_j) = (h_j, s_j, v_j) \ \ d(I(\boldsymbol{x}_i), I(\boldsymbol{x}_j)) = \left[(v_i s_i cos(h_i), v_i s_j sin(h_j), v_i) - (v_j s_j cos(h_j), v_j s_j sin(h_j), v_j) \right]$

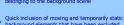
Weight vectors are updated in a neighborhood of best matching neuron (**adaptivity of the model**). Updating the model B_t in a neighborhood N_z

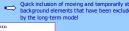
Updating the model
$$B_t$$
 in a neighborhood N_z

$$B_t(\mathbf{y}) = (1 - \sigma_t(\mathbf{y}, \mathbf{z}))B_{t-I}(\mathbf{y}) + \sigma_t(\mathbf{y}, \mathbf{z})I_t(\mathbf{x}), \quad \forall \mathbf{y} \in N_z \quad (1) \Longrightarrow \begin{array}{c} \text{Reinforcement of center pixel's model and of the model of pixels adjacent to sample } \mathbf{x} \\ \text{(adjacent pixels move accordingly)} \end{array}$$

Gaussian weights
$$\alpha_t(\boldsymbol{y},\boldsymbol{z}) = \gamma_t G(\boldsymbol{y}-\boldsymbol{z}) \qquad \gamma_t = \frac{\beta_t}{\max_i G(\boldsymbol{y}-\boldsymbol{z})^i}, \quad \beta_t \in [0,1] \quad \text{s.t. } \alpha_t(\boldsymbol{y},\boldsymbol{z}) \in [0,1]$$

- 4. For the purpose of the double background approach to stopped object detection:
- B_t^L is updated according to (1) $\xrightarrow[]{\text{cens}}$ Background model adapts to scene modifications in a **selectiveway**, only if $d(B_t^{pir}(\mathbf{x}), I_t(\mathbf{x})) < \varepsilon$ belonging to the background scene
- B_t^S is updated according to (1) in a **non selective way**, with $\gamma_t^S >> \gamma_t^L$ Dual Background SOBS Algorithm





Stopped object detection results

i-LIDS'07 dataset - stopped vehicles in no parking areas •Stationary threshold: ₹=1500

•Strong illumination variations (clouds)

- A [Boragno et al., Proc. AVSS 2007]
- [Guler et al., Proc. AVSS 2007]
- C [Lee et al., Proc. AVSS 2007]
- [Porikli et al., EURASIP JASP 2008]
- [Venetianer et al., Proc. AVSS 2007]

DBSOBS [Gemignani,Maddalena & Pe ed to UCHCP 2010)] Seq. GT ϵ_{A} 0 02:46 2 02:52 4 02:51 02:52 4 PV-easy Start 02:48 02:44 02:48 3 03:19 4 03:13 03:16 1 End 03:15 03:20 03:19 4 03:18 01:28 0 01:28 0 01:41 13 01:33 01:43 15 Start 01:28 01:28 End 01:47 01:52 01:55 8 01:54 7 01:55 8 01:50 01:47 0
 02:12
 0
 02:13
 1
 02:08
 4
 02:13

 02:36
 3
 02:36
 3
 02:37
 4
 02:32
 PV-hard Start 02:12 02:12 02:19 7 4 02:32 02:33 02:34 02:34 1 End

segmentation of stopped objects

evidence E(x)

moving objects

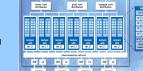
Cuda Programming Model

The G-80 architecture is built around a scalable array of multithreaded **SMs** (Streaming Multipro Current GPU implementations **range from 768 to 12,288 concurrently executing threads.**

•When a CUDA program on the host CPU invokes a kernel grid, the **CWD** (Compute Work Distribution) unit numbers the blocks of the grid and begins distributing them to **SMs** with available execution capacity

•The threads of a thread block execute concurrently on one **SM**As thread blocks terminate, the **CWD** unit launches new blocks on the vacated multiprocessors.

•An **SM** consists of 8 scalar **SP** (Scalar Processor) cores, two **SFUs** (Special Function Units) for transcendental functions, an **MT IU** (Multi-Threaded Instruction Unit), and on-chip shared memory



•The SM creates, manages, and executes up to 768 concurrent threads in hardware with zero scheduling overhead

SIMT Architecture (Single Instruction Multiple Thread)

•The **SM** maps each thread to one **SP** scalar core, and each scalar thread executes independently with its own instruction address and register state

•The **SM SIMT** unit creates, manages, schedules, and executes threads in groups of **32 parallel threads**, called *warps*

•At every instruction issue time, the **SIMT** unit selects a warp that is ready to execute and issues the next instruction to the active threads of the warp

Parallel Scheme

	No. of Task	Task	Computational complexity	CPU-GPU processing	GPU kernel Grid size
Off-Line	1	Init Models	$O(2\times M\times N\times n^2)$	GPU processing Pixel-level parallelism	$G_{1}((2\times M)/th_{X}, N/th_{Y})$
		For t=1, Kinit		CPU processing	
	2	Calibrate Models	$O(2\times M\times N\times n^2)$	GPU processing Pixel-level parallelism	$G_1((2\times M)/th_X, N/th_Y)$
On-Line		For t=Kinit+1, Lastframe		CPU processing	
	3	Update Models	$O(2\times M\times N\times n^2)$	GPU processing Pixel-level parallelism	$G_1((2\times M)/th_X, N/th_Y)$
	4	Foreground Compare	O(2×M×N)	GPU processing Pixel-level parallelism	$G_2(M/th_x, N/th_y)$

Given a sequence image consisting of Mx N pixe and fixed the number of threads per block $th_x x$ th_y We generate a grid of blocks $G_1((2\times M)/th_X, N/th_Y)$

We split G_I into 2 subgrids $G_{S,I}G_I$ of blocks:

• G_S processes the short-term background model B_S^S • G_L processes the long-term background model B_F

We generate a grid of

 $G_2(M/th_x, N/th_y)$

to calculate evidence image E

Speedup

Serial implementation: **Intel Core i7 CPU at 2.67GHz** 543*ms* per frame

• Parallel implementation: Tesla C1060 (30 SMs)

ents for the on-line phase for

Time 160 x 120 12.91*m* 45*x* 8 x 8 160 x 60 7.94*ms* 73*x* 7.99/

Increasing the block size and maintaining a large number of blocks we observe an improvement in performance

