LEARNING FULL PAIRWISE AFFINITIES FOR SPECTRAL SEGMENTATION

Kim T. H., Lee K. M., Lee S. U. - Seoul National University th33@snu.ac.kr, kyoungmu@snu.ac.kr, sanguk@ipl.snu.ac.kr

This paper studies the problem of learning a full range of pairwise affinities gained by integrating local grouping cues for spectral segmentation. By employing a semi-supervised learning technique, optimal affinities are learnt from the test image without iteration in a multi-layer graph with pixels and regions as nodes. These pairwise affinities are then used to simultaneously cluster all pixel and region nodes into visually coherent groups across all layers in a framework of Normalized Cuts.

Introduction

For unsupervised segmentation,

1) Integration of grouping cues across a Full Range of Pairwise Connections by SSL^[3]

Input

By Human

2) High-quality segmentation results in a Multi-**Layer Framework of NCut**

Overview of FNCut:

Conventional Affinity Model

- Directly compute affinities $W = [w_{ij}]_{N \times N}$:

$$w_{ij} = \sqrt{w_{ij}^{ ext{C}} imes w_{ij}^{ ext{B}}} + lpha w_{ij}^{ ext{B}}$$
 in [2]

Color cue: $w_{ij}^{C} = exp(-\theta_x ||x_i - x_j||^2 - \theta_g ||g_i - g_j||^2)$ Boundary cue: $w_{ij}^{\mathrm{B}} = exp(-\max_{i' \in \overline{i}, i} \theta_f ||f_{i'}||^2)$

- $\vec{w}_m = [w_{im}]_{N \times 1}$: Affinity vec. from a node m

- It still has some weakness in the long-range affinity estimation!!

Proposed Affinity Model

To estimate full pairwise affinities,

1) Construct Multi-Layer Graph G^*

2) Learning Full Affinities by SSL^[3]

- $\vec{\pi}_m = [\pi_{im}]_{\hat{N} \times 1}$: Affinity vec. from a node m

$$\vec{\pi}_m = c \left(\mathbf{D}^* - (1 - c) \mathbf{W}^* \right)^{-1} \vec{b}_m$$

By (a)-(c) By (a)-(d)

- Total Affinities $\mathbf{\Pi} = [\vec{\pi}_1, \cdots, \vec{\pi}_{\hat{N}}]$:

By (a)-(b)

By (a)

$$\mathbf{\Pi} = c \left(\mathbf{D}^* - (1 - c) \mathbf{W}^* \right)^{-1}$$

Segmentation Criterion

- Labeling problem in which one label $k \in$ $\{1,...,K\}$ is assigned to each node i
- $\vec{y}_k = [y_{ik}]_{\hat{N} \times 1}$: Partitioning vec. with $y_{ik} = 1$ if i belongs to the k-th segment and 0 otherwise

maximize $C(\mathbf{Y}) = \frac{1}{K} \sum_{k=1}^{K} \frac{\vec{y}_k^T \mathbf{\Pi} \vec{y}_k}{\vec{y}_k^T \mathbf{D} \vec{y}_k}$: NCut

subject to $\mathbf{Y} = [\vec{y}_1, \cdots, \vec{y}_K] \& \mathbf{Y} \mathbf{Y}^T = \mathbf{I}^*$.

Multi-Layer Spectral Clustering

- Its solution is the subspace spanned by the Klargest eigenvectors of $\mathbf{D}^{-\frac{1}{2}}\mathbf{\Pi}\mathbf{D}^{-\frac{1}{2}} \ (= c\mathbf{B}^{-1})$
- Instead, we find the K smallest eigenvectors of $\mathbf{B} = \mathbf{D}^{\frac{1}{2}} \left(\mathbf{D}^* - (1 - c) \mathbf{W}^* \right) \mathbf{D}^{\frac{1}{2}}$
- $-\mathbf{D} = diag(\vec{d}) \text{ with } \vec{d} = c(\mathbf{D}^* (1-c)\mathbf{W}^*)^{-1} \vec{1}.$

Experimental Results

1) Affinities with respect to the variation of c

2) Comparison on the Berkeley Database

NCut 0.7242 2.9061 0.7139 0.7756 2.3217 0.7139 0.71	.1888	14.41 17.15
JSEG 0.7756 2.3217 0. GBIS 0.7139 3.3949 0.	.2232	17 15
GBIS 0.7139 3.3949 0.		61.11
	.1989	14.40
	.1746	16.67
MNCut 0.7559 2.4701 0.	.1925	15.10
NTP 0.7521 2.4954 0.	.2373	16.30
Saliency 0.7758 1.8165 0.	.1768	16.24
TBES 0.80 1.76	-	-
Our algorithm 0.8146 1.8545 0.	.1809	12.21

3) Comparison on the MSRC Database

References

[1] J. Shi et al. PAMI,2000.

Normalized cuts and image segmentation

[2] T. Cour et al. CVPR, 2005.

Spectral segmentation with multiscale graph decomposition

[3] **D. Zhou et al.** NIPS,2003.

Learning with local and global consistency

