LEARNING FULL PAIRWISE AFFINITIES FOR SPECTRAL SEGMENTATION Kim T. H., Lee K. M., Lee S. U. - Seoul National University th33@snu.ac.kr, kyoungmu@snu.ac.kr, sanguk@ipl.snu.ac.kr This paper studies the problem of learning a full range of pairwise affinities gained by integrating local grouping cues for spectral segmentation. By employing a semi-supervised learning technique, optimal affinities are learnt from the test image without iteration in a multi-layer graph with pixels and regions as nodes. These pairwise affinities are then used to simultaneously cluster all pixel and region nodes into visually coherent groups across all layers in a framework of Normalized Cuts. #### Introduction For unsupervised segmentation, 1) Integration of grouping cues across a Full Range of Pairwise Connections by SSL^[3] Input By Human 2) High-quality segmentation results in a Multi-**Layer Framework of NCut** #### **Overview of FNCut:** ## Conventional Affinity Model - Directly compute affinities $W = [w_{ij}]_{N \times N}$: $$w_{ij} = \sqrt{w_{ij}^{ ext{C}} imes w_{ij}^{ ext{B}}} + lpha w_{ij}^{ ext{B}}$$ in [2] Color cue: $w_{ij}^{C} = exp(-\theta_x ||x_i - x_j||^2 - \theta_g ||g_i - g_j||^2)$ Boundary cue: $w_{ij}^{\mathrm{B}} = exp(-\max_{i' \in \overline{i}, i} \theta_f ||f_{i'}||^2)$ - $\vec{w}_m = [w_{im}]_{N \times 1}$: Affinity vec. from a node m - It still has some weakness in the long-range affinity estimation!! #### **Proposed Affinity Model** To estimate full pairwise affinities, 1) Construct Multi-Layer Graph G^* 2) Learning Full Affinities by SSL^[3] - $\vec{\pi}_m = [\pi_{im}]_{\hat{N} \times 1}$: Affinity vec. from a node m $$\vec{\pi}_m = c \left(\mathbf{D}^* - (1 - c) \mathbf{W}^* \right)^{-1} \vec{b}_m$$ By (a)-(c) By (a)-(d) - Total Affinities $\mathbf{\Pi} = [\vec{\pi}_1, \cdots, \vec{\pi}_{\hat{N}}]$: By (a)-(b) By (a) $$\mathbf{\Pi} = c \left(\mathbf{D}^* - (1 - c) \mathbf{W}^* \right)^{-1}$$ ### Segmentation Criterion - Labeling problem in which one label $k \in$ $\{1,...,K\}$ is assigned to each node i - $\vec{y}_k = [y_{ik}]_{\hat{N} \times 1}$: Partitioning vec. with $y_{ik} = 1$ if i belongs to the k-th segment and 0 otherwise maximize $C(\mathbf{Y}) = \frac{1}{K} \sum_{k=1}^{K} \frac{\vec{y}_k^T \mathbf{\Pi} \vec{y}_k}{\vec{y}_k^T \mathbf{D} \vec{y}_k}$: NCut subject to $\mathbf{Y} = [\vec{y}_1, \cdots, \vec{y}_K] \& \mathbf{Y} \mathbf{Y}^T = \mathbf{I}^*$. #### Multi-Layer Spectral Clustering - Its solution is the subspace spanned by the Klargest eigenvectors of $\mathbf{D}^{-\frac{1}{2}}\mathbf{\Pi}\mathbf{D}^{-\frac{1}{2}} \ (= c\mathbf{B}^{-1})$ - Instead, we find the K smallest eigenvectors of $\mathbf{B} = \mathbf{D}^{\frac{1}{2}} \left(\mathbf{D}^* - (1 - c) \mathbf{W}^* \right) \mathbf{D}^{\frac{1}{2}}$ - $-\mathbf{D} = diag(\vec{d}) \text{ with } \vec{d} = c(\mathbf{D}^* (1-c)\mathbf{W}^*)^{-1} \vec{1}.$ #### **Experimental Results** 1) Affinities with respect to the variation of c 2) Comparison on the Berkeley Database | NCut 0.7242 2.9061 0.7139 0.7756 2.3217 0.7139 0.71 | .1888 | 14.41
17.15 | |--|-------|----------------| | JSEG 0.7756 2.3217 0. GBIS 0.7139 3.3949 0. | .2232 | 17 15 | | GBIS 0.7139 3.3949 0. | | 61.11 | | | .1989 | 14.40 | | | .1746 | 16.67 | | MNCut 0.7559 2.4701 0. | .1925 | 15.10 | | NTP 0.7521 2.4954 0. | .2373 | 16.30 | | Saliency 0.7758 1.8165 0. | .1768 | 16.24 | | TBES 0.80 1.76 | - | - | | Our algorithm 0.8146 1.8545 0. | .1809 | 12.21 | 3) Comparison on the MSRC Database ### References [1] J. Shi et al. PAMI,2000. Normalized cuts and image segmentation [2] T. Cour et al. CVPR, 2005. Spectral segmentation with multiscale graph decomposition [3] **D. Zhou et al.** NIPS,2003. Learning with local and global consistency