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Abstract

This paper studies the problem of learning a full

Proposed Affinity Model

To estimate full pairwise affinities,
range of pairwise affinities gained by Integrat- 1) Construct Multi-Layer Graph G*
Ing local grouping cues for spectral segmenta-
tion. By employing a semi-supervised learn-
Ing technique, optimal affinities are learnt from
the test image without iteration in a multi-layer
graph with pixels and regions as nodes. These
pairwise affinities are then used to simultane-

ously cluster all pixel and region nodes into

visually coherent groups across all layers In a

framework of Normalized Cuts.
2) Learning Full Affinities by SSL 3!

- Tm = [Tim] 5« 1 - Affinity vec. from a node m
Introduction

For unsupervised segmentation,

1) Integration of grouping cues across a Full
Range of Pairwise Connections by SSL!3]
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2) High-quality segmentation results in a Multi-
Layer Framework of NCut

Input NCut!! MN Cut |2 FNCut

- Total Affinities IT1 =

[#1,e e R

IT=c(D*— (1 —c)W*)™

Segmentation Criterion

Overview of FNCut:

EVEC:2

- Labeling problem in which one label £ €
{1, ..., K} is assigned to each node ¢

- J = [yik] . - Partitioning vec. with y;, = 1
If 2 belongs to the k-th segment and 0 otherwise
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maximize C(Y) =

| K
® 2
k=1

EVEC 1 EVEC:3 EVEC:4

subjectto Y = [¢1, - , U] & YY ! =T*

Multi-Layer Spectral Cluste

- Directly compute affinities W =

(Wi Nx N
- Its solution is the subspace spanned by the K

In [2] largest eigenvectors of D™ 31D 2 (=cB™1)

- Instead, we find the K smallest eigenvectors of
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Boundary cue: wf’j:exp(— glgi 9f ||fz" H2)
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Color cue: w%zexp(—@m ||zi —
- Wi, = |wim ] N x1: Affinity vec. from a node m -D = diag(d) withd = ¢(D*—(1—c)W*)~ 1 1.

(a) Node m by Wi

- It still has some weakness in the long-range

affinity estimation!! Result at (a) Result at (b) Result at (c) Result at (d)
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Registration and Video Analysis

Experimental Results

1) Affinities with respect to the variation of ¢

2) Comparison on the Berkeley Database

Methods/Score PRI Vol GCE BDE
MShift 0.7958 | 1.9725 | 0.1888 | 14.41
NCut 0.7242 | 2.9061 | 0.2232 | 17.15
JSEG 0.7756 | 2.3217 | 0.1989 | 4.4
GBIS 0.7139 | 3.3949 | 0.1746 | 16.67
MNCut 0.7559 | 24701 | 0.1925 | 15.10
NTP 0.7521 | 2.4954 | 0.2373 | 16.30
Saliency 0.77568 | L2165 | 01768 | 16.24
TBES 0.80 .76

Our algorithm | 0.8146 | 1.8545 | 0.1809 | 12.21
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3) Comparison on the MSRC Database

Input

NCut[l]

References

[1] J. Shi et al. PA MI,2000.

L
l

I

MN Cut 2]

rgs

’

Normalized cuts and image segmentation

[2] T. Couretal. CVPR,2005.

a2

FNCut

Spectral segmentation with multiscale graph decomposition

[3] D. Zhou etal. NIPS,2003.

Learning with local and global consistency

&, (%\Q
'6: \:

L

/‘ﬁa\x

Comp

uterVisionLab

Seoul National University



