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We propose a novel tracking algorithm for the Difficult tracking problem Overview of our algorithm
target of which geometric appearance changes

drastically over time. To track it, we present a Sampling new appearances at
local patch-based appearance model and provide | | eac.h frate
an efficient scheme to evolve the topology

1 'ﬁffd | *I | ”I._T, ‘ IF. o hL“I &

between local patches by on-line update. In the |
process of on-line update, the patch can be Proposal step \ Acceptance step Usmgl
samples

moved, deleted or newly added. Additionally, we
introduce the Basin Hopping Monte Carlo sampling
method to our tracking problem to reduce the
computational complexity and deal with the
problem of getting trapped in local minima.
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. Representing the appearance of an object
as an assembly of local patches.

. Evolving the geometric appearance model via
on-line update.
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