IMAGING UNDER STRUCTURED LIGHT
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Challenge - resolve spatial detail beyond the diffraction limit of a perspective camera

Abstract : The present work describes a novel attempt at using Structured Light, to resolve spatial detail exceeding the optical bandwidth of a perspective camera
(Optical Super-Resolution). It also identifies a family of camera+projector arrangements that can recover depth maps & realize OSR, in an un-calibrated fashion.

Objective of OSR : overcome the fundamental limit on the resolution of an imaging system (due to diffraction), without altering its physical parameters.
The idea is in stark contrast to Digital Super-Resolution which recovers spatial detail lost to aliasing, but limited to ditfraction.

Principle behind OSR [1] : Shift frequencies that are outside the passband of the optics into the passband, by modulating the amplitude of a complex
sinusoidal pattern with scene information. To this end, we project a series of phase-shifted sinusoidal patterns (structured light) onto the scene [2].
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Note : OSR for perspective cameras is an UNSOLVED problem.

m*(z) : camera images under complex sinusoidal illumination

\raw(x) : camera 1mage under uniform + ambient illumination Result of OSR

Original contributions of this work Un-calibrated "OSR + depth estimation” for a perspective camera, with t

o Unified mathematical model for imaging under structured light ............... expressions shown here for a stereo setup with parallel optical axes
Suppose (', 1) projector pixel illuminates the scene point (X, Y, Z), and its corresponding camera pixel (z,y). Let r(zx, y) = iifg;ci 112:52:113 along this path.
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When b7 = 0, 3%-bx + - by = 0, the illumination pattern appears undistorted to the camera, and ig (x, y) contains spatial detail ¢ passband of h(z, y).

Moreover, quahtatlve depth information can be recovered from the phase term vz in ig(x, y), in a collocated parallel stereo setup (b7 = 0), .

Proposed OSR Worktlow Depth Estimation Worktlow Experimental Results

[llumination Panasonic AE-3000 LCD projector
image size = 1400 x 1050,y =1
focused on plane at distance 1.905m

(€0, m0) = (350, 0) Z>> for OSR

(€0,m0) = (0,6)&(0,105) Ci{ncjgees for depth est.
Imaging SMX-115M CMOS sensor + 16mm lens
pixel pitch = 2.2um, v = 1 ,integration time= 125ms
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m*(z, y) m*(z, y) m*(z, y) aperture stopped down to < 2mm
The camera and projector constitute a vertically
v . v . collocated canonical stereo setup.
Aliasing Management Aliasing Management Carrier Demodulation Carrier Demodulation Image in the absence of Structured Light, 1495 x 999
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image of the scene under complex sinusoidal illumination Normalized Depth Map

m*(z,y) = % (ig(:{:, y) — i%ﬂ(x, y)) + \/_( o(2,y) — in(z,9)) (darker objects are nearer)
image of the scene under complex sinusoidal illumination

image of the scene under uniform + ambient illumination
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