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We investigate dual decomposition approaches for optimization problems
arising in low-level vision. Dual decomposition can be used to:

• Parallelize existing algorithms

•Reduce memory requirements

•Obtain approximate solutions of hard problems.

Application considered include graph cut segmentation, curvature
regularization and the optimization of general MRFs. We demonstrate that the
technique can be useful for desktop computers, graphical processing units and
supercomputer clusters.

Kahl and Schoenemann demonstrated at ICCV 2009 that problems with curvature
regularization can be solved with linear programming. Unfortunately the memory
requirements are very large. Our dual decomposition approach applied to those
linear programs has allowed us so save memory and solve larger problems with
shorter run times than previously possible. For a small problem, we reduced the
peak memory usage from 468 to 279 MB.

Dual decomposition can also be used to obtain approximate solutions to very 
hard optimization problems arising in vision:

Dual decomposition is a powerful and simple method to split a large problem into
several small subproblems. Often the smaller problems can be made particularly
easy to solve and the resulting algorithms is both parallelizable and memory-
saving. For convex problems, e.g. minimum cut, global optimality is guaranteed.

We begin with a graph:
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We want to solve this graph in parallel. The trick is to split the graph
in two with some overlap.

Numbers indicate s/t 
connections and egde costs
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The nodes that represent the same variable are constrained to be
equal with dual variables:

x y

ii yx  for every i in the overlap. 

Each constraint has a dual variable and the dual function to be
maximized is:
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We maximize this function with supergradients, solving the two
minimum cut problems in parallel several times.

4 cores 2 cores

Comparison with the common B-K algorithm for 301 images:

Dual decomposition also
allows us to save memory,
since the graphs to be solved
can be allocated to different
computers.

This allowed us to solve a
graph with 512 × 512 × 2317
vertices and over 3.5 billion
edges.

The graph was divided
among 36 machines and
solved globally. We are not
aware of any previous
approaches so solve such
huge graphs. The graph
above required 131 GB of
primary memory.
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where x takes a finite number of labels. All functions are arbitrary, so this is a
very general formulation. Let us assume that the energy function is defined on
a regular grid:

= U

The new problems are one-dimensional and can be solved by dynamic
programming with massive parallelization.

Regularization -exp. FastPD Our (CPU) Rel. dual gap Iterations Our (GPU)

5×104 0.348s 0.123s 0.149s 0.00092 121 0.097s

105 0.223s 0.148s 0.138s 0.00054 111 0.093s

106 0.500s 0.318s 0.086s 0.000035 46 0.043s

Comparison between row/column decomposition and two other common
methods for a 3-label segmentation problem.

Computer 1 Computer 2

Computer 3 Computer 4

Two independent 
problems!


