A PROBABILISTIC APPROACH TOF AND STEREO DATA FUSIO ## Abstract Depth information can be acquired real-time by stereo vision systems and ToF cameras. Both solutions present critical issues that can be overcome by their combined use. In this work, a heterogeneous acquisition system is considered, made of two standard cameras and one ToF camera. This paper introduces a novel multi-camera calibration technique based on the combined use of the color information and of the ToF depth data and a probabilistic fusion algorithm to combine the two devices. # Acquisition Setup Trinocular heterogeneous acquisition system - A ToF camera T - Two standard videocameras $\{L, R\}$ (stereo pair) {dalmutto, pietro.zanuttigh,corte}@dei.unipd.it C. Dal Mutto, P. Zanuttigh, G.M. Cortelazzo - University of Padova ## Calibration - Intrinsic Parameters (distortions, systematic depth error for ToF) - Extrinsic Parameters (rototranslations between cameras) - Stereo already calibrated (*OpenCV*, Camera Calibration Toolbox for Matlab) - Rototranslation between the stereo pair reference system (camera L) and the ToF camera T reference system: M_{L} - * n points acquired with a calibration checkerboard - * 3D points from the stereo pair: P_S^i (triangulation) - * 3D points from the ToF camera: P_T^i (backprojection) * $$\underset{M_L}{\text{arg min}} \sum_{i=1}^{n} ||P_T^i - M_L P_S^i||_2$$ - * 3D Absolute Orientation Problem - * Horn Algorithm + RANSAC - * Average Calibration Error: 0.7[cm] ## Probabilistic Fusion Model - ToF Images: $I_T = \{C_T, D_T\}$ - Stereo Images: $I_S = \{I_L, I_R\}$ - For each point on the lattice of *T* images, the estimated depth is: $\hat{Z} = \arg\max_{Z} P[Z|I_{T}, I]$ - Bayes Rule: $P[Z|I_T, I_S] = \frac{P[I_T, I_S|Z]P[Z]}{P[I_T, I_S]}$ - $\bullet \quad P[Z|I_T, I_S] \propto P[I_T, I_S|Z]P[Z]$ - \bullet P[Z] is uniformlly distributed - $\bullet \quad P[Z|I_T,I_S] \propto \frac{P[I_T,I_S|Z]P[Z]P[Z]}{P[I_T]P[I_S]}$ - Hp: $\{I_S | Z\}$ is independent from $\{I_T | Z\}$ - $\bullet \quad P[Z|I_T,I_S] \propto \frac{P[I_T|Z]P[Z]}{-} \, \frac{P[I_S|Z]P[Z]}{-} \frac{P[I_S|Z$ - $\hat{Z} \approx \arg\max_{Z} P[Z|I_T]P[Z|I_S]$ ## ToF and Stereo Models #### **ToF Camera Model:** The ToF camera model takes into account: - Thermal noise component, distributed as $\mathcal{N}(0, \sigma_t^2)$ - Scattering generated error, approximated by the variance of the depth (σ_s^2) in the second order neighborhood of **p** For each pixel **p** in the Z lattice (Z): - $\bullet \quad P[Z(\mathbf{p})|I_T] \sim \mathcal{N}(d,\sigma_w^2)$ - $d = D_T(\mathbf{p})$, and $\sigma_w = \max(\sigma_t, \sigma_s)$. #### **Stereo Pair Model:** - Each sample \mathbf{p}_i , $i = 1, ..., m \in [d 3\sigma_w, d + 3\sigma_w]$ is reprojected into I_L and I_R - A TAD cost function of the coupling C_i is calculated - $\mathcal{C}_i(\mathbf{p})$ $\bullet \quad P[Z(\mathbf{p}) = z_i(\mathbf{p}_i) | I_T, I_S] \propto \exp{-}$ $\stackrel{/}{-}$, where σ_I is the noise standard deviation in $\{I_L, I_R\}$ # Experimental Results Synthetic ToF image I_T (noisy) Synthetic depth image Zafter the fusion algorithm Real scene image I_L Real scene depth image Zafter the fusion algorithm Difference between Z and I_{T} on the real scene 0.2 |0.1| -0.2