A PROBABILISTIC APPROACH TOF AND STEREO DATA FUSIO

Abstract

Depth information can be acquired real-time by stereo vision systems and ToF cameras. Both solutions present critical issues that can be overcome by their combined use. In this work, a heterogeneous acquisition system is considered, made of two standard cameras and one ToF camera. This paper introduces a novel multi-camera calibration technique based on the combined use of the color information and of the ToF depth data and a probabilistic fusion algorithm to combine the two devices.

Acquisition Setup

Trinocular heterogeneous acquisition system

- A ToF camera T
- Two standard videocameras $\{L, R\}$ (stereo pair)

{dalmutto, pietro.zanuttigh,corte}@dei.unipd.it

C. Dal Mutto, P. Zanuttigh, G.M. Cortelazzo - University of Padova

Calibration

- Intrinsic Parameters (distortions, systematic depth error for ToF)
- Extrinsic Parameters (rototranslations between cameras)
 - Stereo already calibrated (*OpenCV*, Camera Calibration Toolbox for Matlab)
 - Rototranslation between the stereo pair reference system (camera L) and the ToF camera T reference system: M_{L}
 - * n points acquired with a calibration checkerboard
 - * 3D points from the stereo pair: P_S^i (triangulation)
 - * 3D points from the ToF camera: P_T^i (backprojection)

*
$$\underset{M_L}{\text{arg min}} \sum_{i=1}^{n} ||P_T^i - M_L P_S^i||_2$$

- * 3D Absolute Orientation Problem
- * Horn Algorithm + RANSAC
- * Average Calibration Error: 0.7[cm]

Probabilistic Fusion Model

- ToF Images: $I_T = \{C_T, D_T\}$
- Stereo Images: $I_S = \{I_L, I_R\}$
- For each point on the lattice of *T* images, the estimated depth is: $\hat{Z} = \arg\max_{Z} P[Z|I_{T}, I]$
- Bayes Rule: $P[Z|I_T, I_S] = \frac{P[I_T, I_S|Z]P[Z]}{P[I_T, I_S]}$
- $\bullet \quad P[Z|I_T, I_S] \propto P[I_T, I_S|Z]P[Z]$
- \bullet P[Z] is uniformlly distributed
- $\bullet \quad P[Z|I_T,I_S] \propto \frac{P[I_T,I_S|Z]P[Z]P[Z]}{P[I_T]P[I_S]}$
- Hp: $\{I_S | Z\}$ is independent from $\{I_T | Z\}$
- $\bullet \quad P[Z|I_T,I_S] \propto \frac{P[I_T|Z]P[Z]}{-} \, \frac{P[I_S|Z]P[Z]}{-} \, \frac{P[I_S|Z$
- $\hat{Z} \approx \arg\max_{Z} P[Z|I_T]P[Z|I_S]$

ToF and Stereo Models

ToF Camera Model:

The ToF camera model takes into account:

- Thermal noise component, distributed as $\mathcal{N}(0, \sigma_t^2)$
- Scattering generated error, approximated by the variance of the depth (σ_s^2) in the second order neighborhood of **p**

For each pixel **p** in the Z lattice (Z):

- $\bullet \quad P[Z(\mathbf{p})|I_T] \sim \mathcal{N}(d,\sigma_w^2)$
- $d = D_T(\mathbf{p})$, and $\sigma_w = \max(\sigma_t, \sigma_s)$.

Stereo Pair Model:

- Each sample \mathbf{p}_i , $i = 1, ..., m \in [d 3\sigma_w, d + 3\sigma_w]$ is reprojected into I_L and I_R
- A TAD cost function of the coupling C_i is calculated
- $\mathcal{C}_i(\mathbf{p})$ $\bullet \quad P[Z(\mathbf{p}) = z_i(\mathbf{p}_i) | I_T, I_S] \propto \exp{-}$ $\stackrel{/}{-}$, where σ_I is the noise standard deviation in $\{I_L, I_R\}$

Experimental Results

Synthetic ToF image I_T (noisy)

Synthetic depth image Zafter the fusion algorithm

Real scene image I_L

Real scene depth image Zafter the fusion algorithm

Difference between Z and I_{T} on the real scene

0.2

|0.1|

-0.2