

A SPATIALLY VARYING PSF-BASED PRIOR FOR ALPHA MATTING

Rhemann C.^{1*}, Rother C.², Kohli P.²,

Gelautz M.¹

Microsoft[®] Research

¹Institute for Software Technology and Interactive Systems Vienna University of Technology, Austria

²Microsoft Research Cambridge Cambridge, UK

Abstract

We propose a new "image formation" based prior for alpha matting. The prior matte is obtained by convolving the high-resolution binary object segmentation with the spatially varying point spread function (PSF) of the camera. By assuming that the PSF is a single peaked kernel, we recover the binary segmentation with an MRF-based approach, which exploits flux and a new way of enforcing connectivity. Our new prior enables us to generate results that outperform all competitors on a public benchmark.

Motivation

Ground truth Input image

Result of [Wang et al.07]

State-of-the-art matting models are ambiguous!

Our contribution: Stronger prior from the **image** formation process

Our prior model

Why do fractional alpha values occur?

+ trimap

Defocus blur

Motion blur

Discretization

Light-transmitting objects

Our model:

Binary segmentation

Spatially varying PSF (~ depth)

Matting Prior

Approach taken

Key challenge: Blind deconvolution from approximate alpha matte. (Reconstruct binary segmentation and spatially varying PSF)

Estimating and upsampling an initial matte

- Initialize alpha with conventional matting method [Rhemann et al., BMVC08]
- **Upsampling alpha** ensures that underlying binary segmentation is at least pixel sized

Estimating the binary segmentation

Data: Binary segmentation close to input alpha

Flux: Detects edges / preserves thin structures (e.g. hair) **Smoothness:** Ising prior

Connectivity: **Enforces** segmentation to be 4-connected

* This work was supported in part by Microsoft Research Cambridge through its PhD Scholarship Programme and by the Vienna Science and Technology Fund (WWTF) under project ICT08-019.

Enforcing connectivity

For each disconnected island:

Segmentation without connectivity

Segmentation under constraint Alternative solution: that island is connected

remove island

Keep solution with lower energy

How to find segmentation under constraint that two regions are connected?

- DijkstraGC [Vicente et al., CVPR09]: Computationally expensive.
- Our approach: Shortest path computation in min-marginal map [Kohli, Torr; ECCV06]

Final connected segmentation

Estimating a spatially varying PSF

Basic idea:

Segment image into regions with similar defocus and estimate a PSF in each region.

Energy for blur kernel estimation:

Data: Estimate blur radius along segmentation boundary

Smoothness: Constrast-sensitive truncated linear

Loose comparison of defocus estimation:

Trimap

Our defocus

trimap

map using

Defocus map [Bae et al., Eurographics07]

Depth map of [Levin et al., SIGGRAPH07]

Results

Input image

Composite with [Levin et al., CVPR06]

Our composite

Performance on alphamatting.com benchmark:

- Top performing on 3 out of 4 error measures
- Our prior: better than prior of [Rhemann et al., CVPR08]