Abstract

We propose to formulate multi-target
tracking as minimization of a contin-
uous energy function. Other than a
number of recent approaches we fo-
cus on designing an energy function
that represents the problem as faith-
fully as possible, rather than one that
is amenable to elegant optimization.
To find strong local minima of the pro-
posed energy we extend the conjugate
gradient method with periodic trans-
dimensional jumps. Experiments on

public datasets validate our approach.

Objectives

e Form an energy function which
represents the actual situation
(more) faithfully

e Find strong local minima

o Tracking-by-Detection approach.
A sliding window detector (HOG,
HOF) extracts a set of hypotheses.
Data Association (tracking) is per-
formed in 3D world coordinates
(On the ground plane).

Global Tracking formulation: all
trajectories within a time window
are optimized jointly.

The energy function (1) is mini-
mized by a combination of conju-
gate gradient descent and trans-
dimensional jump moves.
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The energy E is defined in continuous space over all targets in all frames [1]:
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. Initialize with an arbitrary tracker, e.¢. Extended Kalman Filter (EKF), ILD, etc...
. Minimize E locally using conjugate gradient descent.
. Execute a jump move to find a better configuration (see figure below).
. Iterate steps 2 and 3 until convergence or max. number of iterations.
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Results

Quantitative results of an EKF-tracker (initial) and our method (final).

Jump moves

add

Sequence MOTA [%] MOTP [%] MT

initial  final diff | initial final diff | initial final diff
TUD |[3] 53.3 609 +7.6 57.4 659 +8.4 5 6 +1
PETS [2] 64.7 78.7 +14.0 | 754 76.7 +1.4 9 16 +7




