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Histopathological images are an important resource for clinical diagnosis and biomedical research. Automatic annotation of these images is particularly

challenging from an image understanding point of view. This paper presents a novel method for automatic histopathological image annotation based on

three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of

histopathological images, second a latent topic model, based on non-negative matrix factorization, which is in charge of capturing the high-level visual

patterns, and, third, a probabilistic annotation model that connects visual patterns with the semantics of this problem. The method was evaluated using

1604 annotated images of basal cell carcinoma, a collection with different types of skin cancer. The preliminary results demonstrate an improvement on

precision and recall of 24% and 64% against support vector machines.

Bag of Featu

The visual representation of histopathological
images is obtained as a bag of features (BOF).
The below image depicts the setup used here.
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Histopatholog

The image dataset used here corresponds to
a skin cancer known as basal cell carcinoma
stained with hematoxylin-eosin (HE). This
dataset is composed by two set of images,
1466 (training) and 138 (testing). The training
image set (mono-label) comprises subimages
of 300 x 300 pixels, each annotated with only
one of the 10 concepts present in the collec-
tion, whereas the test image set (multi-label)
comprises larger images of 1024 x 768 pixels,
which, in general, are annotated with more than
one concept.

Example images of each data set are shown
below:
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Results and Conclusion

The below Table shows the average performance in the test dataset using Accuracy (Acc), Precision

(Pr), Recall (Rc) and F-measure (F).

1-concept images

n-concepts images

Method

Acc

Pr

Rc

F

Acc

Pr

Rc

F

SVM-RBF

0.96

0.84

0.69

0.76

0.70

0.26

0.10

0.11

A2NMF

0.92

0.67

0.46

0.51

0.76

0.5

0.74

0.55

The evaluation was performed in two scenarios: a simple mono-label annotation task, corresponding to using only

training images (80%-20% split for training and testing), and the original complex multi-label annotation task. In

both cases the method was compared with a Support Vector Machine (SVM) with RBF kernel choosing the best

parameters by 10-fold cross-validation.

Histopathological images are particularly challenging to analyze because of their high variability and complex visual

structure. These results suggest that latent semantic characterization of the visual structure is a viable alternative to

build competitive histopathology annotation models.



