
A SIMPLE INPAINTING METHOD
AND ITS GPU IMPLEMENTATION
Hannes Fassold - JOANNEUM RESEARCH, DIGITAL
hannes.fassold@joanneum.at

Abstract
A simple image inpainting method is
proposed, and its efficient GPU im-
plementation for NVIDIA GPUs is de-
scribed. A speedup factor of 7 - 11
is observed for the GPU implemen-
tation, compared with an optimized
CPU implementation.

Goal
• Simple and fast inpainting algo-

rithm

• Suitable for thin, crack-like holes
(e.g. appearing in warped im-
ages in frame interpolation)

• Maps well onto massively paral-
lel devices like GPUs

Algorithm
• Determine set of hole border pix-

els

• For each hole border pixel, prop-
agate its intensity into the hole
along a fixed set of directions
(e.g. 16)

– Uses accumulator image A
and weight image W

– All pixels P visited during
line tracing (Bresenham)
are updated via

A(p) = A(p) + gb/dcurr

W (p) = W (p) + 1/dcurr

where gb is the border pixel
intensity and dcurr is the
distance to the respective
border pixel

– Inpainted image I = A/W

• Distance-adaptive blurring of in-
painted regions

– Reduces some star-like
artefacts which may occur

– Calculate distance map and
blur hole pixels adaptively
(less blurring for hole pixels
near to border)

Illustration of border pixel
propagation

GPU implementation
Determine hole border pixel set

• 3 x 3 Dilate and Subtraction from
original image delivers mask
where only border pixels are set

• Use compaction function from
NVIDIA CUDPP library to re-
trieve list of border pixel posi-
tions

Border pixel propagation

• One thread = one border pixel

• One kernel call per direction (all
threads trace in the same direc-
tion)

• Atomic operations not used

– Generally slow on pre-
Fermi GPUs

– Not available for float type
for pre-Fermi GPU

• Performance penalty due to
warp divergence

– Due to different paths the
threads are tracing

Distance-adaptive blurring

• Distance map (fast methods are
inherently serial) replaced by ap-
proximation

• Each thread read reads neigh-
bors for largest occuring blur
kernel (to reduce warp diver-
gence)

Inpainting Results

Runtime Results
• Intel Xeon 3.0 Ghz Quadcore,

NVIDIA GTX 285

• 3-channel, 8bit image

• 1.4 % of pixels to inpaint

Acknowledgements
The author would like to thank
Jakub Rosner and several collegues at
JOANNEUM RESEARCH - DIGITAL.

1


