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Abstract
In this work, we investigate how 3D
shape models from computer graph-
ics can be leveraged to ease train-
ing data generation. In particular we
employ a rendering-based reshaping
method to generate thousands of syn-
thetic samples from only a few per-
sons and views. Experiments on a
challenging multi-view dataset indi-
cate that the data from just eleven per-
sons suffices to achieve good perfor-
mance, while combination of our syn-
thetic data with real data outperforms
even the state of the art.

Motivation
• Collection of large representa-

tive dataset is hard
• Manual data annotation is te-

dious and noisy
• Synthetic data produced by cur-

rent methods (e.g. [5]) lacks re-
alism and models to control its
variability

People Detection Model
Pictorial structures model [2]

• Flexible configuration of body
parts with pose prior

• AdaBoost part detectors learned
from dense shape context de-
scriptor

• Inference by sum-product belief
propagation

3D Body Model
Statistical 3D human shape model [3]

• Learn shape from 3D body
scans, represent via PCA

• Use kinematic skeleton for mo-
tion modeling

Proposed Approach (CVPR’11)
1. Generate realistic synthetic data by MovieReshape [4]

• Employ statistical 3D model of human shape

• Fit the model to multi-view sequences

• Sample 3D model height parameters to drive 2D image deformations

2. Combine reshaped humans with backgrounds
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⇒ Realistic distributions of human appearance and shape

Results
• Samples from training datasets

Reshape CVC [5] Real [1]

• Evaluation on challenging multi-view data [1]
Results using Combining different datasets
Reshape data generic detectors viewpoint-specific
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Andriluka et. al., CVPR'10 (82.5%)
Reshape 11 persons (80.9%)
Reshape 6 persons (76.1%)
Reshape 2 persons (68.8%)
Reshape 1 person (55.0%)
CVC (71.8%)
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Reshape + Andriluka et. al (85.8%)
Reshape + Andriluka et. al + CVC (86.9%)
CVC + Andriluka et. al (84.3%)
Andriluka et. al (CVPR'10) (82.5%)
Reshape + CVC (79.9%)
Reshape (80.9%)
CVC (71.8%)
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Reshape + Andriluka et. al (90.3%)
Andriluka et. al., CVPR'10 (combined) (88.7%)
CVC + Andriluka et. al (89.3%)
Reshape + Andriluka et. al + CVC (87.4%)
Reshape + CVC (79.9%)
Reshape (combined) (79.3%)
CVC (combined) (76.1%)
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