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Abstract
Canonical shape analysis is a popular method in
deformable shape matching, trying to bring the
shape into a canonical form that undoes its non-
rigid deformations, thus reducing the problem
of non-rigid matching into a rigid one.
As a result, the shape canonization process re-
places the original shape by its stretched-the-
most variant.
Inspired by natural phenomena, we propose to
perform such a stretching by the simulation of
electrostatic repulsion among the vertices of the
shape.

Related works
Elad and Kimmel [3] proposed to perform
the canonization by measuring geodesic dis-

tances on the shape and embedding them into a
Euclidean space by means of multidimensional

scaling (MDS):

min
X={x1,...,xn}

nX

i,j=1

(dij � kxi � xjk)2 ,

where dij = intrinsic metric.
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If the embedding is isometric, then intrinsic

similarity between original shapes = extrinsic

similarity between canonical forms:

�!MDS

ICP

 �MDS

Main drawbacks:
• distortion is data dependent

10�1

10�10

• sensitivity to topological noise
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Our approach [5]

repulsion: F /
1

kxi � xjk2

metric constraints on
edges (i, j) 2 E only:
kxi � xjk = dij

shape “Coulombization”:

min
X

X

i 6=j

1

kxi � xjk
| {z }

Coulomb energy

s.t. kxi � xjk = dij

Coulomb energy: E(X) = �rF

We propose to solve our problem using alternat-
ing minimization:

• step(s) of unconstrained minimization:

X

(t) = X

(t�1) � crE(X(t�1))

• projection on metric constraints:

X

(t) = proj(X(t))

If the metric constraints are imposed exactly,
such a canonical representation is isometric (no
metric distortion). However, since closed poly-
hedral surfaces are known to be rigid, it is nec-
essary to relax the metric constraints.

How to overcome this difficulty? In [5] we pro-
pose to change the optimization using approxi-

mate projections on the constraints:
X

(i,j)2E

(dij � kxi � xjk)2.

Groginsky [1] observes that the violation of the
constraints can be minimized through the fixed-

point iteration
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where ⌫ stands for the valence of the vertex xi.

Distortion control
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Handling topological noise
Due to the local nature of the topological noise,
we consider an L

1 violation of the constraints
X

(i,j)2E

|dij � kxi � xjk|,

in order to exploit the sparsity-inducing proper-
ties of the L

1 norm. In [4], the authors shows
that the new problem can be solved by a sim-
ple re-weighting of the previous fixed-point it-
eration.
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