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Abstract
The depth information obtained from multiple view algorithms or RGB-d sensors is frequently incomplete [3]. We study how
to improve the scene depth estimation combining any kind of rough initial estimation with a pipeline for pixel-wise labeling
optimization [5]. Our preliminary pipeline makes use of superpixel image segmentation and Markov-Random-Field solvers,
both of them very powerful tools frequently used to obtain a robust and consistent labeling in an image. We propose and
analyze how to modify the MRF cost functions and superpixel description to improve the performance.

Quantitative evaluation
• Error per pixel: difference between
the ground truth values and the MRF
depth propagation

error = gt - final depth

Input Input Initial Depth
image a depth superpixel propagation
Tsukuba 23.4555 21.4349 20.7857
Venus 17.9249 13.3355 8.8710
Cones 31.9362 25.0465 8.9230
Teddy 32.0781 25.6495 9.6206

Sawtooth 16.0922 13.2377 9.51
Bull 12.7467 10.3099 7.4231

Poster 15.7758 11.4537 9.3676
Barn1 15.6588 12.3351 9.5196
Barn2 15.3817 12.8297 10.2926
Map 21.5471 23.2944 21.7738

aDatasets: http://vision.middlebury.edu/stereo/data/
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Pipeline and Sample Results
1. Input image + input depth (from any kind of source)

RGB-d depth map Disparity map Disparity map Point cloud

↓
2. Superpixel segmentation [4]: reducing complexity of labeling problem

↓
3. Input depth + segmentation = initial superpixel depth: the whole
superpixel gets a depth value according to its pixel depth distribution

↓
4. MRF based depth propagation + smoothing → final depth estimation

Analysis of MRF cost functions
Energy Function: Unary cost Binary cost

(per superpixel) (for each couple p,q of neighbouring superpixels)
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multiple-view commercial software or state-of-the-art im-
plementations, using depth and vision sensors or using stereo
estimation), but in general, all of them frequently provide
partially incomplete, sparse or incorrect depth estimation,
i.e., there are pixels without an assigned depth value, what
we will call depth gaps in the following.

Hence, in order to assign a depth value z to each super-
pixel S, we analyze the depth distribution among the pixels
that belong to each superpixel and we choose the median
depth value Me as representative of that superpixel depth Sz.
All depth values are normalized ∈ [0,1]. In cases where no
pixel inside a superpixel S has a valid depth value, the super-
pixel gets assigned a 0 depth value (Sz = 0).

Using this simple step that merges the superpixel segmen-
tation with the input depth we already manage to fill some
depth gaps. In Figure 4 we can see an example where we im-
prove the result in the estimated disparity map of an stereo
pair if we combine it with the superpixel segmentation.

(a) Input image (b) Superpixels

(c) Input depth (disparity) (d) Initial superpixels depth

Figure 4: (a) The original image is segmented in (b) super-
pixels. If we combine the superpixels segmentation with the
input depth (c), disparity map, we obtain an improved dis-
parity estimation (d).

5. Depth propagation as a labeling problem

A Markov Random Field (MRF) provides a convenient way
of modeling a labeling problem. The MRF defines an undi-
rected graph G, where its nodes N represent a set of inde-
pendent variables and its edges V represent the relationships
between neighbor nodes. Given a set of labels L, a labeling
problem consists in assigning to each node p ∈ N a label
l ∈ L. This problem can be formulated with an energy func-
tion E, which determines the total cost of a graph labeled.
The energy equation 1 defines two costs: C(lp) denotes the
cost to assign a particular label l to a node p and C(lp, lq)
denotes the cost related to two labels connected by an edge.

E = ∑
p∈N

C(lp)+ ∑
{p,q}∈V

C(lp, lq) (1)

where lp ∈ L denotes the label l of the node p.

There are several techniques that deal with finding the op-
timal labeling, which minimizes this energy function. In our
work, we use the graph cuts optimization [BVZ01] to re-
solve the energy minimization for Markov Random Fields.
The code used in our experiments was provided by the au-
thors [SZS∗08].

The nodes in our MRF graph are the superpixels we have
obtained. To build the connections (edges) in this graph, we
need to determine the neighborhood condition between su-
perpixels. We establish that two superpixels are neighbors
when they share pixels between their borders. The labels as-
signed to each superpixel (node) consist on depth values.
This approach favors that nearby superpixels have similar
depth.

For defining the unary cost function C(lp) there are some
specific aspects we want to take into account. We aim to fa-
vor that a superpixel preserves its initially assigned label zp,
except when this initial label is zp = 0 (no depth information
was found for that superpixel). Even so, this initial depth
value can be incomplete (unlabeled pixels inside the super-
pixel) and noisy (inconsistent values of pixel depths). We
analyze the distribution of pixel depth values within a su-
perpixel, and we consider the accuracy ap as the percentage
of pixels within the superpixel p which have a valid depth
value, and the variance σ2 of its pixel depth values. This way,
we measure how reliable are the superpixel original values.
The expressions to calculate ap and σ2 are:

ap =
∑np

i (zi > 0)
np

(2)

σ2 =
1
2

np

∑
i=1

(zi − z)2 (3)

where zi represents the depth value of pixel i and np the num-
ber of pixels of the superpixel p. This leads to the following
unary const function:

C(lp) =

�
0 : zp = 0
wu ·ap · (1−σ2) · (zp − lp)

2 : zp > 0
(4)

where wu ∈ [0,1] is a control factor that leverages the ef-
fect of the unary cost function over the binary cost function.
In Figure 5, we can see its effects in the depth propagation.
When we increase the unary weight wu, we reduce the global
blur in the image, but increase the potential number of unla-
beled or wrongly labeled superpixels.

With the unary cost function, we want to obtain higher
cost when the label to be assigned is very different than the
depth values that the superpixel originally had, except when
depth value is 0. This value is modulated by the accuracy
and noise of the pixel depths inside the superpixel.
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(a) wu = 0.5 (b) wu = 0.9

Figure 5: Increasing the weight wu (unary vs. binary weight)
we reduce the global blur in the image, but increase the po-
tential number of unlabeled or wrongly labeled superpixels.

For establishing the binary cost function C(lp, lq), we con-
sider that connected superpixels have similar depths. How-
ever, we assume that high color differences mark the bound-
aries between different objects that may lay at different
depths. Therefore, we also include a measure about the ac-
tual similarity between two neighbor superpixels in the im-
age (their appearance). Given two neighbor superpixels p
and q, we compare their color histograms in the CIE-lab
space color as follows:

dlab =
d(HL

p ,HL
q )+d(Ha

p ,Ha
q )+d(Hb

p ,Hb
q )

3
(5)

where HL
p represents the histogram in the luminance L chan-

nel of the superpixel p (with analogous definitions for the
chrominance channels a and b and superpixel q). The color
histograms are normalized between [0,1] and the difference
between two histograms d(H1,H2) is defined as:

d(H1,H2) =
∑i(H1(i)−H1) · (H2(i)−H2)�

∑i(H1(i)−H1)2 ·∑i(H2(i)−H2)2
(6)

We then define the binary cost function as follows:

C(lp, lq) = (1−wu)(1−dlab)(lp − lq)2 (7)

where (1 − wu) is the weight of the binary cost function
compared to the unary cost function (wu has been defined
in Equation 4).

With this binary cost equation, we want to encourage
neighbor superpixels have similar labels. To avoid a global
blur in the image, this cost depends on how similar the su-
perpixels look on the image, i.e., the color similarity dlab
between the superpixels. This way, we manage to keep the
object boundaries, because this similarity is likely to be low
when superpixels belong to completely different parts or ob-
jects. We obtain high cost when two superpixels have differ-
ent labels but they present a similar color distribution.

6. Experiments

This section presents experiments to validate the imple-
mented pipeline, evaluate the proposed formulation for the
energy function and measure the influence of the different

terms and steps in the final solution. Section 6.1 presents a
quantitative and exhaustive evaluation of the performance of
our pipeline, comparing the results against a given ground
truth. In section 6.2, we have analyzed how the different su-
perpixel segmentation parameters affect to the solution ob-
tained. Section 6.3 presents additional examples where the
input depth has been obtained from a point cloud and a RGB-
d camera respectively.

6.1. Quantitative evaluation of our approach

Our first tests are designed to evaluate the proposed cost
functions and quantify the obtained improvements.

6.1.1. Dataset used

We use publicly available datasets [SS03, SS02], which are
designed to evaluate stereo algorithms, where the ground
truth represents the disparity between pixels from two im-
ages. Although, the disparity and the depth are not the same
concept, they are closely related. In a stereo configuration
(Figure 6), we only have a horizontal translation (without ro-
tation) between the two cameras, and the disparity disp can
be calculated as the horizontal displacement between two
corresponding pixels:

disp = xL − xR (8)

z =
f B

disp
(9)

Figure 6: In a stereo configuration the depth and disparity
are inversely proportional.

With this configuration, we know all parameters and can
see that the disparity disp and the depth z are inversely pro-
portional. Hence, the points with same disparity belong to
the same depth plane. The input depth, in this case the dis-
parity map, which is going to be improved with our ap-
proach, is the result obtained with an implementation of the
Hirschmuller algorithm [Hir08]. This algorithm computes
stereo correspondence using the semi-global block matching
algorithm.

6.1.2. Experimental set up.

To measure the improvement obtained in the depth estima-
tion, we have evaluated how different parameters affect to
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