Path analysis using geodesic active contours.

Cancela B., Ortega M., Penedo M.G.

VARPA Group, Department of Computer Science, University of A Coruña, Spain

Abstract

Path analysis is an important field of study in security environments. It is a powerful tool in behavioral systems, such as detecting abnormal behavior in targets with erratic movements, road analysis detecting traffic jams and possible escape routes. We present a new strategy for path analysis based in the idea of that a target tends to choose the path that takes less time to reach its goal, avoiding unnecessary huge deviations. Thus, the system can be modeled as a minimal path approach.

Path analysis

- ► Our model introduces insight about the human trajectory behavior from a computer vision point of view. Some hypothesis are presented, and a methodology that tries to refute them is presented.
- ▶ A modified Fast Marching Method is used to compute the average time and space needed to reach any position in the scene.
- Spatial and temporal metrics were created in order to detect whereas a target behavior is abnormal or not.

Advantages of minimal paths

Minimal Path Technique

Traffic scene application

MAIN ROUTE RESULTS

The algorithm provides information about the traffic usual routes in a parking lot.

The system is able to cope with usual, inusual and erratic movements.

Conclusions

- A new vision for path analysis using directional forces is provided.
- ▶ No clustering techniques are needed.
- ▶ Usual route can be computed at any given moment.
- ► Good results achieved both with and without information a priori about the environment.
- ▶ The methodology is able to cope with changes in the behavior along time.
- ► Experiments over crowded datasets show promising results.

References

- [1] B. Cancela, M. Ortega, M.G. Penedo, J. Novo, and N. Barreira. On the use of a minimal path approach for target trajectory analysis. *Pattern Recognition*, 46(7):2015–2027, 2013.
- [2] B. Cancela, M. Ortega, M.G. Penedo. Trajectory Similarity Measures using Minimal Paths. *Image Analysis and Processing–ICIAP 2013*, 400–409, 2013.
- [3] B. Cancela, M. Ortega, M.G. Penedo. Unsupervised Trajectory Modelling using Temporal Information via Minimal Paths. *Computer Vision and Pattern Recognition–CVPR 2014*, to appear, 2014.

