

Exploiting Shading Cues in Kinect IR images for **Geometry Refinement**

Published in CVPR 2014

Phone: +82-42-350-5465 Email: gmchoe@rcv.kaist.ac.kr

Homepage: http://rcv.kaist.ac.kr/~gmchoe/

Gyeongmin Choe, Jaesik Park, Yu-Wing Tai and In So Kweon Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Motivation

Geometry from Low cost depth sensor

Using IR Instead of color

Images for geometry refinement

Target object

High-quality 3D geometry

Advantages of IR Image

(2) Less Albedo Variance

③ IR Invariability under Indoor Lightings

- Kinect IR camera filters out most undesired ambient light that makes our system robust to indoor illumination.
- Our method works well in both dark room and natural lighting environment.

Kinect Near-IR Band

Our IR Light Model

$$I(u) = \frac{c\rho}{d^2} (n \cdot l) + I_{Ambient}$$
 The beauty of IR

- I(u): pixel intensity,
- ρ : albedo of surface, n: surface normal,
- l: lighting direction, c is the global brightness
- d: the distance between surface point and center of light source

To radiometrically calibrate the IR shading images, we use intensity observations of a known geometry and determine the gamma function.

Multiple Albedo handling

Single albedo

$$c\rho = \frac{1}{Z} \sum_{i=1}^{N} \sum_{\substack{m=1, \\ \mathbf{u}_{i,m} \in V_i}}^{M} \frac{d_{i,m}^2}{\mathbf{n}_{i,m} \cdot \mathbf{l}_{i,m}} I_m(\mathbf{u}_{i,m})$$

IR

albedo

Multiple albedo

 $c\rho_i = \frac{1}{Z_i} \sum_{\mathbf{x}_j \in N(\mathbf{x}_i)} \sum_{m=1, \dots \atop m=1, \dots} \frac{d_{j,m}^2}{\mathbf{n}_{j,m} \cdot \mathbf{l}_{j,m}} I_m(\mathbf{u}_{j,m})$ Color

K-means clustering for albedo grouping. 4-dimensional feature $[x \ y \ z \ c\rho]$ is used.

Capturing Setup & Mesh Optimization

images

Depth map derived from a Kinect fusion mesh vertices

Minimizing the energy function below.

$$\arg\min_{\boldsymbol{\delta}} E_p(\boldsymbol{\delta}) + E_s(\boldsymbol{\delta}),$$

i is shading intensity, δ is displacement of vertices, $w_{i,k} = \boldsymbol{n_{i,k}} \cdot \boldsymbol{l}_{i,k}$ λ_1 and λ_1 are the weights for local smoothness and regularizer term respectively.

 \mathbf{n}_{j}

$$C_p(\boldsymbol{\delta}) = \sum_{i=1}^p \sum_{k \in V_i} w_{i,k} \left(i_{i,k} - c\rho \frac{\mathbf{n}_{i,k}(\delta_{i,k}) \cdot \mathbf{l}_{i,k}}{d_{i,k}^2} \right)^{\frac{1}{2}}$$

$$E_s(\boldsymbol{\delta}) = \sum_{i=1}^p \sum_{j \in N_i} \lambda_1 (\delta_i - \delta_j)^2 + \sum_{i=1}^p \lambda_2 (\delta_i)^2,$$

Experimental Results

Kinect fusion

Apollo

Cicero

Towel

IR shading image

Kinect fusion

Our results