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Abstract
This poster proposes the definition and the so-
lution of the problem of finding a hypercavity
as a data-free hypersphere with a maximal ra-
dius. This problem is formulated here as mul-
tiextremal problem with constraints in a linear
feature space and in a linear space produced
by a kernel function. In accordance with the
proposed approach, which succeeds to the one-
class SVM, a center of a hypersphere is found as
a linear combination of some small quantity of
so called "support" objects.

Kernel functions
Kernel function K(ωi, ωj) is a symmetric

real-valued function of two arguments, the ma-
trix of which values is positive definite for
any finite set of objects ωi, ωj ∈ Ω, i, j =
1, . . . , N .

The kernel function K(ωi, ωj) produces a
Euclidian metric:

ρ(ωi, ωj) =

[K(ωi, ωi) +K(ωj , ωj)− 2K(ωi, ωj)]1/2

It embeds objects Ω into Euclidian real linear
space Ω̃ ⊃ Ω and plays the role of inner product
(ωi, ωj) = K(ωi, ωj) in it.

The kernel trick allows for algorithms to be
more flexible and to identify not only spherical-
shaped hypercavities. Moreover, it allows to use
the proposed approach in cases when it is prob-
lematic to form the useful for further analysis
feature space of objects. It is typical, in partic-
ular, for analyzing the biomolecular sequences,
signals of different nature and images.
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Problem definition

Let’s we have:
1) N objects, which are represented by n -

dimensional vectors of their real features xi ∈
Rn, i = 1, ..., N and the Euclidean distance
d(x′,x′′) between points x′,x′′ ∈ Rn in the re-
spective linear space.

2) a hypershere in this linear space, which is
completely characterized by a center A ∈ Rn

and a radius R and includes the assumed hy-
percavity localization region.

We will seek:
a hypersphere with a center a in the convex

hull of the set of objects Conv(XN ) a maximal
radius r, which does not contain objects and is
located inside this hypersphere with the center
A ∈ Rn and the radius R

Finding a hypercavity
The problem is formulated as multiextremal problem and brings to necessety of finding a vector of

nonnegative coefficients λ = [λi, ..., λN ]T , which defines a hypersphere′s.
In a linear feature space:

min
i=1,...,N

d

(
N∑

j=1
λjxj ,xi

)
→ max(λ),

d(A,
N∑
i=1

λixi) 6 R− min
i=1,...,N

d

(
N∑

j=1
λjxj ,xi

)
.

N∑
i=1

λi = 1, λi > 0, i = 1, ..., N

In a linear space Ω̃ produced by kernel function K(ωi, ωj):

r2(λ)→ max(λ),

r2(λ) =
N∑

j=1

N∑
t=1

λjλtK(ωj , ωt)+ min
i=1...N

(
K(ωi, ωi)− 2

N∑
j=1

λjK(ωi, ωj)

)
,

N∑
i=1

N∑
j=1

K(ωi, ωj) (µiµj+ λiλj − 2λiµj) 6 (R− r(λ))2.

N∑
i=1

λi = 1, λi > 0, i = 1 . . . N,

where µi, i = 1, ..., N are coefficients, which define the center of the outer hypersphere A =
N∑
i=1

µiωi.

In practice, only a small number of the coefficients are not equal to zero and describe the hypersphere‘s
center. These coefficients correspond to objects located on the hyperspheres boundary. These objects
are naturally called support ones similar to support vectors defining the hypersphere‘s center in the
Support Vector Data Description (SVDD).

The evolution of genes

The hypothetical progress of the gene evolution
process, accompaned by formation of a

hypercavity(according to All-Russia Research Institute
of Agricultural Microbiology,St-Petersburg)

Finding a hypercavity would allow to determine

possible location of the common ancestor of existing

gene variants.

Results of experiments
Cavity search results in two-dimentional feature
space:

Cavity search results in spaces produced by dif-
ferent kernel functions:

So, kernel functions allow to define the cavity
boundaries more precisely.
The cumulative result: about 92% of 150 hyper-
cavities were correctly found. At that all the
detected errors were connected with unreached
global maximum.
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