slamRT: a real-time slam system to deal with Rotations and Translations

Herrera C. D.†, Kim K.‡, Kannala J.†, Pulli K.‡, Heikkilä J.†

† Center for Machine Vision Research, University of Oulu, Finland UNIVERSITY of OULU

‡ NVIDIA Research

Abstract

We demonstrate a slam system that deals with both pure rotations and generic camera motion seamlessly in realtime. Inspired by PTAM, it improves performance by also adding non-triangulated features to the map.

Characteristics:

- Free of restrictions on camera motion
- Takes advantage of triangulated points to speed up matching and pose estimation
- Reduces drift by matching to map features
- Performs bundle adjustment in the background
- Real-time and open source

Mixing 2D and 3D features

3D reprojection error

2D epipolar error

2D features reproject to an epipolar line Distance to line: $|Norm(p_aK_aE_{ab}K_b)p_b|^2$

Upgrading 2D to 3D

- Features are triangulated when the angle θ is above threshold.
- Dynamic baseline based on distance

Keyframe selection

Compromise: map complexity vs. scene coverage.

New keyframe selection criteria:

- Add when 3D features are observed from different angle
- Add when 2D features can be triangulated
- Add when new 2D features are available

- Hybrid cost function allows pose tracking with and without a translation.

Contributions

- New keyframe selection minimizes map complexity while maximizing map coverage.
- Open source.

