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Abstract

Interacting via text chats is a channel of communication whose usage has

augmented considerably in the last years. It is interesting to understand
whether social behaviour can emerge in chats, similarly as it does in face-to-
face exchanges. In this work, we focus on the writing style of an individual,
analysing how it can be recognized given a portion of chat, and how

personality comes into play in this scenario. To this aim, we set up a chat

service where key-logging functionalities are active, embedded into the

Klimble social network. What emerges from this study is that some ftraits
correlate at the 5% significance level with some characteristics of the chatting

style of people, captured by stylometric features; at the same time some of
such features are very effective in recognizing a person among a gallery of
diverse individuals. This seems to suggest that some personality traits may

lead people to chat in a particular style, which turns out to be very
recognlqule As a result, chatting is definitely more than just typing.

1. Introduction

There is more than words in chats [1,2,3]:
o A chat is like a medal, on one side there is the text, on the
other side there is its intrinsic conversational nature:
The presence of text and the turn taking mechanism.
The Challenges
1. Extract signals from chats by using a soft biometrics strategy.
2. Exploit these sighals to recognize and verify the identity.
3. Study how personality traits come into play in this scenario.

We use a set of stylometric features in
order to deal with Authorship
Attribution (AA):

2. A New Set of Features

o Recognizes the author of a text
sample [Abbasi’08]
o Stylometric features (Content free)
v’ n-order Length Transitions: similar
to n-grams, defined on the length
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v’ Lexical (number of words, chars,
mean word length, number of
uppercase letters...)

v’ Syntactic (humber of ? and ! marks,
three points (...), ...)

o

= HiMarco, how's it going?
There's a little bit of work to do ...

Giorgio

Varco Everything is going well Giorgio!

OK!

| set up a chat service where key-logging
functionalities are active, so that we have the
complete control of the timings of each key
pressing;

Marco what's up?

some traits correlate significantly with some
characteristics of the chatting style of people!!!

For each turn we have its

startingJending time (in sec.)

Gorgo = Hi Marco, how's it going?
There's a little bit of work to do ...

feature | at t=1 . . .
o First attempt in the literature

v Writing Behaviour (Writing
Speed, Typing Time, Silence
Time, 150LTT, ...)

Marco  Everything is going well Giorgio!

Giorgio (QKI
| set up a chat service where key-logging
functionalitie e active, so that we have the
mplt tlfthtmg of each key
pressin g;

feature j at t=2

Glorgio  some traits correlate significantly with some

characteristics of the chatting style of people!!!

feature j at t=3 | Histogram for feature |

6. Conclusions

Two important results do emerge: 1) some personality traits correlate significantly with some soft biometrics traits; 2)some of such features are very
effective in recognizing a person among a gallery of diverse individuals. The contribution of this research paves the way for multimodal interfaces
capable of recognizing the identity and/or the personality traits of a person, recommending e.g. kinds of interlocutors whom they would be more

comfortable to talk with.
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Verifies the user

the normalized Area Under

Characteristic (nAUC).

4. Re-ldentification Performance

e As a performance measure for the identity recognition, we use
the

Every conversation
has T = 15 turns

If ‘X’ is among the
first K subjects, it
is verified.

Cumulative Matching

The Dataset
e 50 different users
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20 minutes of chatting activity
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* From 30 to 200 turns
* 15 turns as gallery and 15 as probe

Recognition Results

* Most of the features show to have
low correlations

* Averaging their distances allow to

obtain a final distance D

Final nAUC of 88.4%

Verification

In the verification, we act on the

5. Personality Traits

* We analyse 8 personality traits.

e Significant correlation found of 6
traits with 10 of the suggested
features.

 This interactions can be decisive
in determining whether it is
possible to recognize the
personality traits independently
from the kind of interaction.

* What seems to emerge is that there are personality traits that
lead one to chat in a particular manner.

Non Planning
Impulsiveness

Impulsiveness

parameter K
e Maximum F1 value for K=8

(precision 77%, recall 87%)

Mean Word Length,
Mimicry, Emoticons, ...

Motor Mean Word Length.

BIS #HEmoticons, Mimicry, ...

PA Mean Word Length,
Word Writing Speed,
Emo.
Pos.,#Words,10LT,...
NA Mimicry, #Emoticons..
PANAS Mimicry, Emo.Pos.




