STOCHASTIC SEGMENTATION TREES

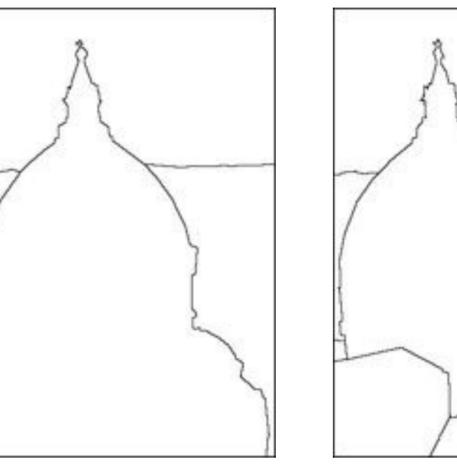
Snell Jake, Zemel Richard S. University of Toronto {jsnell,zemel}@cs.toronto.edu

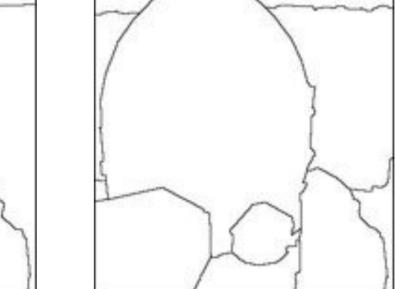
ABSTRACT

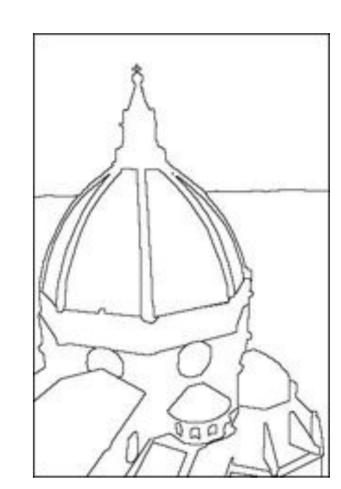
Many structured output problems such as image segmentation admit multiple correct outputs for a single input. We present a recursive neural networkbased framework for modeling multiple output segmentations via a hierarchical tree of image regions. We perform learning by minimizing KL divergence from a target distribution constructed using a task-specific loss function from the ground truths. We conduct experiments on segmentations synthesized from the Penn-Fudan pedestrian dataset.

GOAL AND MOTIVATION

An image from the Berkeley Segmentation dataset







Three of the corresponding ground truth segmentations

- Many structured output problems admit multiple correct outputs for a given input.
- Instead of reducing these to a single target, we want to capture the variations in outputs.
- **Goal**: Treat multiple ground truth segmentations as a target <u>distribution</u> while taking advantage of the hierarchical structure inherent to natural images. The model should predict multiple plausible outputs at test time.

NOTATION

- x: input image
- $S = \{s_1, \dots, s_M\}$: ground truth segmentations
- $\Delta(s_j, s) = 1 RI(s_j, s)$: loss of predicting srelative to ground truth s_j
- $RI(s_j, s)$ (Rand Index): sum of pixel pairs that have the same label in s_j and s and those that have different labels in both, divided by the number of pixel pairs
- z: a region hierarchy consisting of nodes z_1, \ldots
- c_i : feature representation of z_i
- θ : model parameters
- $\mathcal{N}(z)$: non-terminal nodes of z
- y_i : binary label corresponding to node $z_i \in \mathcal{N}(z_i)$
- $\mathcal{Y}(z)$: set of binary labelings y such that the label of a child is greater than or equal to that of its parent

RNN-BASED REGION HIERARCHY

- Similar to RNN framework of (Socher et al. 2011)
- Tree formed by merging neighboring image region:
- Start by extracting features from superpixels
- Each node z_i has a fixed-length feature vector c_i
- Merges made by greedily maximizing a scoring function:

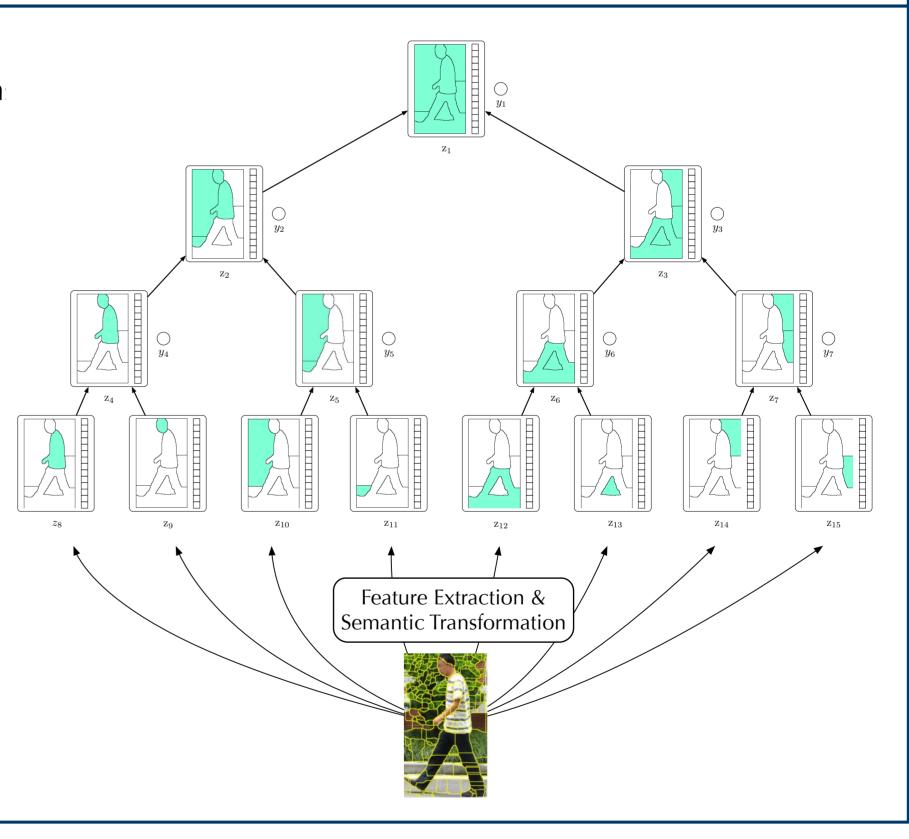
$$\psi_k = g^{\text{score}}(W^{\text{score}}[c_i; c_j] + b^{\text{score}})$$

Parent feature vectors computed from children:

$$c_k = g^{\text{feat}}(W^{\text{feat}}[c_i; c_j] + b^{\text{feat}})$$

- Each merge adds a binary auxiliary variable y_k
- A labeling y of all auxiliary variables corresponds to a segmentation s(y) of the image, provided that the label of a child is greater than or equal to that of its parent
- Model distribution over y depends on ψ :

$$p(y \mid x, z; \theta) = \frac{1}{Z(x, z; \theta)} \exp \sum_{v \in \mathcal{N}(z)} \psi_v y_v$$



LEARNING

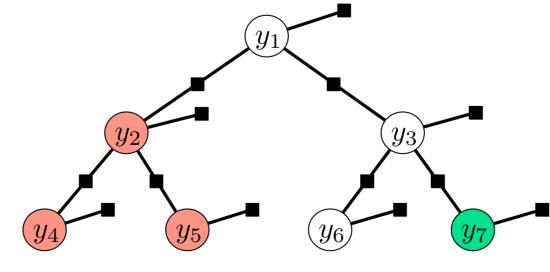
Minimize the KL divergence of p from target distribution q

$$\mathcal{L}(x, z, S; \theta) = -\sum_{y \in \mathcal{Y}(z)} q(y|z, S) \log p(y|x, z; \theta) - H(q)$$

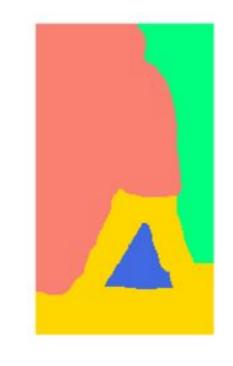
• q is a mixture of distributions, one for each s_j : $q(y|z, S) = \frac{1}{M} \sum_{j=1}^{M} q_{j}(y|z, s_{j})$, where

$$q_j(y|z, s_j) = \frac{1}{Z_{q_j}(z, s_j)} \exp\left(-\frac{\Delta(s_j, s(y))}{\rho}\right)$$

- $p(y|x,z;\theta)$ can be encoded by a tree-structured factor graph with pairwise potentials encoding restrictions on y, leading to efficient and exact inference.
- $\Delta(s_j, s)$ decomposes over nodes and thus can also be represented by a factor graph with the same structure.
 - Inference is efficient for both p and q_i
- Gradient updates for θ can be computed via backpropagation through structure (Goller & Kuchler 1996).
- With entropy message passing (Ilic et al. 2011), we can also compute a bound on the objective $\mathcal{L}(x, z, S; \theta)$.



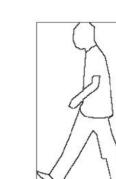
Factor graph structure for p and q_i . Example y shown with all labels $y_i = 1$ highlighted.



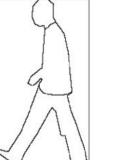
The segmentation resulting from example labeling y. $y_6 = 0$ in this example, so z_{12} (gold) and z_{13} (blue) are separate in the corresponding segmentation.

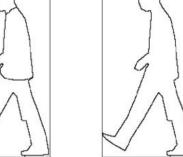
EXPERIMENTS

• Experiments will be conducted on segmentations synthesized from labeled body parts of the Penn-Fudan pedestrian dataset* by merging semantic classes together based on distance from the torso.









Semantic labels (left) and four synthesized ground truth segmentations

- Performance will be evaluated via precision (expected loss of output segmentations relative to closest ground truth) and recall (mean expected loss of output segmentations relative to each individual ground truth).
- Baselines will include alternate methods for generating multiple outputs, such as diverse Mbest MAP (Batra et al. 2012).

*http://www.cis.upenn.edu/~jshi/ped_html/