
• Many structured output problems admit multiple correct outputs for a given input.
• Instead of reducing these to a single target, we want to capture the variations in outputs.
• Goal: Treat multiple ground truth segmentations as a target distribution while taking advantage of the hierarchical 

structure inherent to natural images. The model should predict multiple plausible outputs at test time.
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STOCHASTIC SEGMENTATION TREES

Many structured output problems such 
as image segmentation admit multiple 
correct outputs for a single input. We 
present a recursive neural network-
based framework for modeling multiple 
output segmentations via a hierarchical 
tree of image regions. We perform 
learning by minimizing KL divergence 
from a target distribution constructed 
using a task-specific loss function from 
the ground truths. We conduct 
experiments on segmentations 
synthesized from the Penn-Fudan 
pedestrian dataset.

ABSTRACT

• x: input image

• S = {s1, . . . , sM}: ground truth segmentations

• �(sj , s) = 1�RI(sj , s): loss of predicting s 

relative to ground truth sj

• RI(sj , s) (Rand Index): sum of pixel pairs that 

have the same label in sj and s and those that 

have different labels in both, divided by the 
number of pixel pairs

• z: a region hierarchy consisting of nodes z1, . . .

• ci: feature representation of zi
• ✓: model parameters

• N (z): non-terminal nodes of z

• yi: binary label corresponding to node zi 2 N (zi)

• Y(z): set of binary labelings y such that the label 

of a child is greater than or equal to that of its 
parent

NOTATION

GOAL AND MOTIVATION

• Similar to RNN framework of (Socher et al. 2011)
• Tree formed by merging neighboring image regions
• Start by extracting features from superpixels
• Each node zi has a fixed-length feature vector ci
• Merges made by greedily maximizing a scoring 

function:

 k = gscore(W score[ci; cj ] + bscore)

• Parent feature vectors computed from children:

ck = gfeat(W feat[ci; cj ] + bfeat)

• Each merge adds a binary auxiliary variable yk
• A labeling y of all auxiliary variables corresponds

to a segmentation s(y) of the image, provided 

that the label of a child is greater than or equal to 
that of its parent

• Model distribution over y depends on  :

p(y | x, z; ✓) = 1

Z(x, z; ✓)
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RNN-BASED REGION HIERARCHY

• Minimize the KL divergence of p from target distribution q

L(x, z, S; ✓) = �
P

y2Y(z) q(y|z, S) log p(y|x, z; ✓)�H(q)

• q is a mixture of distributions, one for each sj:
q(y|z, S) = 1

M

PM
j=1 qj(y|z, sj), where

qj(y|z, sj) = 1
Zqj (z,sj)

exp
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• p(y|x, z; ✓) can be encoded by a tree-structured factor graph 

with pairwise potentials encoding restrictions on y, leading

to efficient and exact inference.

• �(sj , s) decomposes over nodes and thus can also be 

represented by a factor graph with the same structure.
⁃ Inference is efficient for both p and qj

• Gradient updates for ✓ can be computed via back-
propagation through structure (Goller & Kuchler 1996).

• With entropy message passing (Ilic et al. 2011), we can 

also compute a bound on the objective L(x, z, S; ✓).

LEARNING

• Experiments will be conducted on segmentations 
synthesized from labeled body parts of the Penn-
Fudan pedestrian dataset* by merging semantic 
classes together based on distance from the torso.

• Performance will be evaluated via precision 
(expected loss of output segmentations relative to 
closest ground truth) and recall (mean expected 
loss of output segmentations relative to each 
individual ground truth).

• Baselines will include alternate methods for 
generating multiple outputs, such as diverse M-
best MAP (Batra et al. 2012).

EXPERIMENTS

An image from the Berkeley 
Segmentation dataset

Three of the corresponding ground truth segmentations
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Feature Extraction &
Semantic Transformation

Factor graph structure for p and qj.

Example y shown with all labels yi = 1 highlighted.

The segmentation resulting from 
example labeling y. 

y6 = 0 in this example, so z12 
(gold) and z13 (blue) are 

separate in the corresponding 
segmentation.
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*http://www.cis.upenn.edu/~jshi/ped_html/

Semantic labels (left) and four synthesized ground truth segmentations


