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Abstract
Structure estimation from motion is a
classical topic in computer/robot vi-
sion. We propose an active strategy
that enforces an estimation dynamics
equivalent to that of a linear 2nd-order
system with desired poles by suitably
acting on the estimation gains and on
the inputs applied to the system. This
can also be combined with execution
of a visual servoing task exploiting a
novel projection operator to increase
robot redundancy. The theory is ex-
perimentally validated in various case
studies.

Observer design
Let (s ,χ) ∈ Rm+p with{

ṡ = fm(s, u, t) +ΩT (t)χ

χ̇ = fu(s, χ, u, t)

with input u, s ∈ Rm measurable and
χ ∈ Rp unmeasurable. The observer{

˙̂s = fm(s, u, t) +ΩT (t)χ̂+Hξ

˙̂χ = fu(s, χ̂, u, t) + αΩ(t)ξ

with ξ = s− ŝ,H > 0, α > 0 (gains) is
(locally) exponentially stable iff [1] the
Persistence of Excitation (PE) holds∫ t+T

t
Ω (τ)ΩT (τ) dτ ≥ γIp > 0 ∀t ≥ t0

or (when m ≥ p) if Ω (t)ΩT (t) ≥ γ
T Ip

Case studies
• Point feature [2]: let s = (X0
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1 = ΩΩT = (sxvz − vx)2 + (syvz − vy)2

note: in all cases only linear velocity v enters in σ2
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constant (blue) v (same norm)

• Spherical target [2]: s = P0

R and χ = 1
R with m = 3 > p = 1{

ṡ = [s]× ω − vχ

σ2
1 = ΩΩT = ‖v‖2

note: direction of motion
doesn’t matter in this case
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• Cylindrical target [2]: s = P0

R and χ = 1
R with m = 3 > p = 1

{
ṡ = [s]× ω + (aaT − I)vχ

σ2
1 = ΩΩT = ‖v‖2 − (aTv)2 0 1 2 3 4 5 6 7
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• Planar scene [3]: s = (mij) with mij =
∑N
k=1 x

i
ky
j
k (discrete points) or mij =∫∫

Op
xiyjdxdy (dense patch) and χ = −n/d with m ≥ p = 3

ṁij = fmij (mkl, ω)

+ fΩij (mkl, v)χ

σ2
1,2,3 = σ2

1,2,3(mkl, v)

expression depends on chosen
moments but can always be
computed in closed form
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The active strategy
• Eigenvalues σ2

1 of ΩΩT determine
convergence rate
• in SfM Ω = Ω(s,u = (v,ω)) and

˙(σ2
i ) = Ju,iu̇+ Js,iṡ

we can optimize the behavior by ac-
tively choosing uwith, e.g.
u̇ =

k1u

‖u‖2
(
‖u0‖2 − ‖u‖2

)
+ k2

(
I − uu

T

‖u‖2

)
(JTu,1 − J

†
u,1Js,1

ˆ̇s)

Result:
• fastest convergence speed for a

given limited ‖u‖
• predictability of z = χ− χ̂ transient

(approximates a 2-nd order system)
• online strategy (no pre-planning)
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Multitask coupling [4]
In visual servoing we often have:

d

dt
(task) = ṙ = J(s, q, χ)u

• estimating χ while executing the
task can improve performance

• redundancy can be exploited for ac-
tive estimation

• redundancy can be maximized con-
trolling task error norm ν (one quan-
tity) instead of task error
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