
Figure 3: Features extracted from a deep network,
visualized in a 2-dimensional space. Note the clear
separation between categories, indicative of a suc-
cessful embedding.

Learning Semantic Features In addition to end-to-end
training, Ca↵e can also be used to extract semantic features
from images using a pre-trained network. These features
can be used “downstream” in other vision tasks with great
success [2]. Figure 3 shows a two-dimensional embedding
of all the ImageNet validation images, colored by a coarse
category that they come from. The nice separation testifies
to a successful semantic embedding.
Intriguingly, this learned feature is useful for a lot more

than object categories. For example, Karayev et al. have
shown promising results finding images of di↵erent styles
such as “Vintage” and “Romantic” using Ca↵e features (Fig-
ure 4) [6].
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Figure 4: Top three most-confident positive pre-
dictions on the Flickr Style dataset, using a Ca↵e-
trained classifier.

Object Detection Most notably, Ca↵e has enabled us
to obtain by far the best performance on object detection,
evaluated on the hardest academic datasets: the PASCAL
VOC 2007-2012 and the ImageNet 2013 Detection challenge
[3].
Girshick et al. [3] have combined Ca↵e together with tech-

niques such as Selective Search [10] to e↵ectively perform
simultaneous localization and recognition in natural images.
Figure 5 shows a sketch of their approach.
Beginners’ Guides To help users get started with in-

stalling, using, and modifying Ca↵e, we have provided in-
structions and tutorials on the Ca↵e webpage. The tuto-
rials range from small demos (MNIST digit recognition) to
serious deployments (end-to-end learning on ImageNet).
Although these tutorials serve as e↵ective documentation

of the functionality of Ca↵e, the Ca↵e source code addition-
ally provides detailed inline documentation on all modules.
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Figure 5: The R-CNN pipeline that uses Ca↵e for
object detection.

This documentation will be exposed in a standalone web
interface in the near future.

5. AVAILABILITY
Source code is published BSD-licensed on GitHub.5 Project

details, step-wise tutorials, and pre-trained models are on
the homepage.6 Development is done in Linux and OS X,
and users have reported Windows builds. A public Ca↵e
Amazon EC2 instance is coming soon.
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DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

(a) LLC (b) GIST (c) DeCAF1 (d) DeCAF6

Figure 1. This figure shows several t-SNE feature visualizations on the ILSVRC-2012 validation set. (a) LLC , (b) GIST, and features
derived from our CNN: (c) DeCAF1, the first pooling layer, and (d) DeCAF6, the second to last hidden layer (best viewed in color).

layer types and to execute pre-trained networks efficiently
without being restricted to a GPU (which in many cases
may hinder the deployment of trained models). Specif-
ically, we adopted open-source Python packages such as
numpy/scipy for efficient numerical computation, with
parts of the computation-heavy code implemented in C and
linked to Python. In terms of computation speed, our model
is able to process about 40 images per second with an 8-
core commodity machine when the CNN model is executed
in a minibatch mode.

Our implementation, decaf, will be publicly available1.
In addition, we will release the network parameters used in
our experiments to allow for out-of-the-box feature extrac-
tion without the need to re-train the large network2. This
also aligns with the philosophy of supervised transfer: one
may view the trained model as an analog to the prior knowl-
edge a human obtains from previous visual experiences,
which helps in learning new tasks more efficiently.

As the underlying architecture for our feature we adopt the
deep convolutional neural network architecture proposed
by Krizhevsky et al. (2012), which won the ImageNet
Large Scale Visual Recognition Challenge 2012 (Berg
et al., 2012) with a top-1 validation error rate of 40.7%.
3 We chose this model due to its performance on a difficult
1000-way classification task, hypothesizing that the activa-
tions of the neurons in its late hidden layers might serve
as very strong features for a variety of object recognition
tasks. Its inputs are the mean-centered raw RGB pixel in-

1
http://decaf.berkeleyvision.org/

2We note that although our CPU implementation allows one
to also train networks, that training of large networks such as the
ones for ImageNet may still be time-consuming on CPUs, and we
rely on our own implementation of the network by extending the
cuda-convnet GPU framework provided by Alex Krizhevsky
to train such models.

3The model entered into the competition actually achieved a
top-1 validation error rate of 36.7% by averaging the predictions
of 7 structurally identical models that were initialized and trained
independently. We trained only a single instance of the model;
hence we refer to the single model error rate of 40.7%.

tensity values of a 224⇥ 224 image. These values are for-
ward propagated through 5 convolutional layers (with pool-
ing and ReLU non-linearities applied along the way) and 3
fully-connected layers to determine its final neuron activ-
ities: a distribution over the task’s 1000 object categories.
Our instance of the model attains an error rate of 42.9% on
the ILSVRC-2012 validation set – 2.2% shy of the 40.7%
achieved by (Krizhevsky et al., 2012).

We refer to Krizhevsky et al. (2012) for a detailed discus-
sion of the architecture and training protocol, which we
closely followed with the exception of two small differ-
ences in the input data. First, we ignore the image’s orig-
inal aspect ratio and warp it to 256 ⇥ 256, rather than re-
sizing and cropping to preserve the proportions. Secondly,
we did not perform the data augmentation trick of adding
random multiples of the principle components of the RGB
pixel values throughout the dataset, proposed as a way of
capturing invariance to changes in illumination and color4.

3.2. Feature Generalization and Visualization

We visualized the model features to gain insight into the
semantic capacity of DeCAF and other features that have
been typically employed in computer vision. In particular,
we compare the features described in Section 3 with GIST
features (Oliva & Torralba, 2001) and LLC features (Wang
et al., 2010).

We visualize features in the following way: we run the t-
SNE algorithm (van der Maaten & Hinton, 2008) to find a
2-dimensional embedding of the high-dimensional feature
space, and plot them as points colored depending on their
semantic category in a particular hierarchy. We did this on
the validation set of ILSVRC-2012 to avoid overfitting ef-
fects (as the deep CNN used in this paper was trained only
on the training set), and also use an independent dataset,
SUN-397 (Xiao et al., 2010), to evaluate how dataset bias

4According to the authors, this scheme reduced their models’
test set error by over 1%, likely explaining much of our network’s
performance discrepancy.
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Figure 3: Features extracted from a deep network,
visualized in a 2-dimensional space. Note the clear
separation between categories, indicative of a suc-
cessful embedding.

Learning Semantic Features In addition to end-to-end
training, Ca↵e can also be used to extract semantic features
from images using a pre-trained network. These features
can be used “downstream” in other vision tasks with great
success [2]. Figure 3 shows a two-dimensional embedding
of all the ImageNet validation images, colored by a coarse
category that they come from. The nice separation testifies
to a successful semantic embedding.
Intriguingly, this learned feature is useful for a lot more

than object categories. For example, Karayev et al. have
shown promising results finding images of di↵erent styles
such as “Vintage” and “Romantic” using Ca↵e features (Fig-
ure 4) [6].
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Figure 4: Top three most-confident positive pre-
dictions on the Flickr Style dataset, using a Ca↵e-
trained classifier.

Object Detection Most notably, Ca↵e has enabled us
to obtain by far the best performance on object detection,
evaluated on the hardest academic datasets: the PASCAL
VOC 2007-2012 and the ImageNet 2013 Detection challenge
[3].
Girshick et al. [3] have combined Ca↵e together with tech-

niques such as Selective Search [10] to e↵ectively perform
simultaneous localization and recognition in natural images.
Figure 5 shows a sketch of their approach.
Beginners’ Guides To help users get started with in-

stalling, using, and modifying Ca↵e, we have provided in-
structions and tutorials on the Ca↵e webpage. The tuto-
rials range from small demos (MNIST digit recognition) to
serious deployments (end-to-end learning on ImageNet).
Although these tutorials serve as e↵ective documentation

of the functionality of Ca↵e, the Ca↵e source code addition-
ally provides detailed inline documentation on all modules.
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Figure 5: The R-CNN pipeline that uses Ca↵e for
object detection.

This documentation will be exposed in a standalone web
interface in the near future.

5. AVAILABILITY
Source code is published BSD-licensed on GitHub.5 Project

details, step-wise tutorials, and pre-trained models are on
the homepage.6 Development is done in Linux and OS X,
and users have reported Windows builds. A public Ca↵e
Amazon EC2 instance is coming soon.
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Core Open Pretrained
Framework License language Binding(s) CPU GPU source Training models Development

Ca↵e BSD C++
Python,

distributed
MATLAB

cuda-convnet [7] unspecified C++ Python discontinued

Decaf [2] BSD Python discontinued

OverFeat [9] unspecified Lua C++,Python centralized

Theano/Pylearn2 [4] BSD Python distributed

Torch7 [1] BSD Lua distributed

Table 1: Comparison of popular deep learning frameworks. Core language is the main library language, while
bindings have an o�cially supported library interface for feature extraction, training, etc. CPU indicates
availability of host-only computation, no GPU usage (e.g., for cluster deployment); GPU indicates the GPU
computation capability essential for training modern CNNs.

lion images per day on a single K40 or Titan GPU. The
same models can be run in CPU or GPU mode on a vari-
ety of hardware: Ca↵e separates the representation from the
actual implementation, and seamless switching between het-
erogeneous platforms furthers development and deployment—
Ca↵e can even be run in the cloud.

While Ca↵e was first designed for vision, it has been adopted
and improved by users in speech recognition, robotics, neu-
roscience, and astronomy. We hope to see this trend con-
tinue so that further sciences and industries can take advan-
tage of deep learning.

Ca↵e is maintained and developed by the BVLC with the
active e↵orts of several graduate students, and welcomes
open-source contributions at http://github.com/BVLC/caffe.
We thank all of our contributors for their work!

2. HIGHLIGHTS OF CAFFE
Ca↵e provides a complete toolkit for training, testing,

finetuning, and deploying models, with well-documented ex-
amples for all of these tasks. As such, it’s an ideal starting
point for researchers and other developers looking to jump
into state-of-the-art machine learning. At the same time,
it’s likely the fastest available implementation of these algo-
rithms, making it immediately useful for industrial deploy-
ment.

Modularity. The software is designed from the begin-
ning to be as modular as possible, allowing easy extension to
new data formats, network layers, and loss functions. Lots
of layers and loss functions are already implemented, and
plentiful examples show how these are composed into train-
able recognition systems for various tasks.

Separation of representation and implementation.
Ca↵e model definitions are written as config files using the
Protocol Bu↵er language. Ca↵e supports network archi-
tectures in the form of arbitrary directed acyclic graphs.
Upon instantiation, Ca↵e reserves exactly as much memory
as needed for the network, and abstracts from its underly-
ing location in host or GPU. Switching between a CPU and
GPU implementation is exactly one function call.

Test coverage. Every single module in Ca↵e has a test,
and no new code is accepted into the project without corre-
sponding tests. This allows rapid improvements and refac-
toring of the codebase, and imparts a welcome feeling of
peacefulness to the researchers using the code.

Python and MATLAB bindings. For rapid proto-
typing and interfacing with existing research code, Ca↵e
provides Python and MATLAB bindings. Both languages

may be used to construct networks and classify inputs. The
Python bindings also expose the solver module for easy pro-
totyping of new training procedures.

Pre-trained reference models. Ca↵e provides (for aca-
demic and non-commercial use—not BSD license) reference
models for visual tasks, including the landmark “AlexNet”
ImageNet model [8] with variations and the R-CNN detec-
tion model [3]. More are scheduled for release. We are
strong proponents of reproducible research: we hope that
a common software substrate will foster quick progress in
the search over network architectures and applications.

2.1 Comparison to related software
We summarize the landscape of convolutional neural net-

work software used in recent publications in Table 1. While
our list is incomplete, we have included the toolkits that are
most notable to the best of our knowledge. Ca↵e di↵ers from
other contemporary CNN frameworks in two major ways:

(1) The implementation is completely C++ based, which
eases integration into existing C++ systems and interfaces
common in industry. The CPU mode removes the barrier of
specialized hardware for deployment and experiments once
a model is trained.

(2) Reference models are provided o↵-the-shelf for quick
experimentation with state-of-the-art results, without the
need for costly re-learning. By finetuning for related tasks,
such as those explored by [2], these models provide a warm-
start to new research and applications. Crucially, we publish
not only the trained models but also the recipes and code
to reproduce them.

3. ARCHITECTURE

3.1 Data Storage
Ca↵e stores and communicates data in 4-dimensional ar-

rays called blobs.
Blobs provide a unified memory interface, holding batches

of images (or other data), parameters, or parameter updates.
Blobs conceal the computational and mental overhead of
mixed CPU/GPU operation by synchronizing from the CPU
host to the GPU device as needed. In practice, one loads
data from the disk to a blob in CPU code, calls a CUDA
kernel to do GPU computation, and ferries the blob o↵ to
the next layer, ignoring low-level details while maintaining
a high level of performance. Memory on the host and device
is allocated on demand (lazily) for e�cient memory usage.

CAFFE: CONVOLUTIONAL ARCHITECTURE 
FOR FAST FEATURE EMBEDDING
Jia Y., Shelhamer E.*, Donahue J., Karayev S., Long J., Girshick R., Guadarrama S., Darrell T.!
UC Berkeley EECS!
{jiayq,shelhamer,jdonahue,sergeyk,jonlong,rbg,sguada,trevor}@eecs.berkeley.edu

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Caffe provides vision scientists and practitioners with!
!
- a framework for state-of-the-art deep learning algorithms!
- a collection of reference models!
- processing of > 40 million images a day 
≈ 2.5 ms per image on a single GPU!

- Python and MATLAB bindings for experiments!
!
in a fully open-source BSD-licensed C++ / CUDA library.
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