Unsupervised Learning of Keypoints through Conditional Image Generation

Tomas Jakab^{* 1}, Ankush Gupta^{* 1}, Hakan Bilen², Andrea Vedaldi¹ ¹VGG, University of Oxford, ²University of Edinburgh * equal contribution

arxiv.org/abs/1806.07823

Our goal

Learn semantically meaningful landmarks without any manual annotations

Motivation

Why to learn landmarks?

Low dimensional object representation

Interpretable

Why unsupervised?

Reduce dependency on expensive manual annotations

Leverage vast amount of videos available online

Method

C.

Intuition

new pose

Intuition

Intuition

goal: reconstruct target

goal: reconstruct target

J $\hat{\mathbf{x}}$ X unsupervised keypoint extraction Φ K_{\blacksquare} $[x_1, y_1]$ +1 \mathbf{X}^{\prime} $x_{m k}, y_{m k}$

heatmap for each keypoint

for each heatmap K

heatmap for each keypoint

row-wise & column-wise sum

column-wise sum

unsupervised landmarks

linear regression

regressed landmarks

Method	K	MAFL	AFLW	
CFAN		15.84	10.94	
TCDCN		7.95	7.65	supervised
Cascaded CNN		9.73	8.97	methods
RAR		—	7.23	methous
MTCNN		5.39	6.90	
Thewlis [1]	50	6.67	10.53	
Thewlis [2](frames)	—	5.83	8.80	🖉 uses equivariance
Zhang [3] w/ equiv.	30	3.16	6.58	
w/o equiv.	30	8.42	_	unsupervised
Ours	30	3.23	7.20	methods
Ours selfsup.	30	3.08	6.98	

Human pose

Unsupervised landmarks on Human3.6m

Human pose

Regressed landmarks on BBCPose

3D objects smallNORB

invariance to 3D pose, lighting and object shape

Disentangling style and geometry

Street numbers

appearance

geometry

reconstruction

appearance

geometry

reconstruction

Human pose

appearance

geometry

reconstruction

Related work

J. Thewlis, H. Bilen, and A. Vedaldi. Unsupervised learning of object landmarks by factorized spatial embeddings. In Proc. ICCV, 2017.

J. Thewlis, H. Bilen, and A. Vedaldi. Unsupervised object learning from dense invariant image labelling. In Proc. NIPS, 2017.

Y. Zhang, Y. Guo, Y. Jin, Y. Luo, Z. He, and H. Lee. Unsupervised discovery of object landmarks as structural representations. In Proc. CVPR, 2018.

C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In Proc. NIPS, pages 613–621, 2016.

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. SuperPoint: Self-Supervised Interest Point Detection and Description." arXiv preprint arXiv:1712.07629 (2017).

Hu, Q., Szabó, A., Portenier, T., Zwicker, M., & Favaro, P. (2017). Disentangling Factors of Variation by Mixing Them. arXiv preprint arXiv:1711.07410.

Denton, E. L. (2017). Unsupervised learning of disentangled representations from video. In Advances in Neural Information Processing Systems (pp. 4414-4423).

Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., & Murphy, K. (2018). Tracking Emerges by Colorizing Videos. arXiv preprint arXiv:1806.09594.

Conditional Image Generation for Learning the Structure of Visual Objects

Tomas Jakab^{* 1}, Ankush Gupta^{* 1}, Hakan Bilen², Andrea Vedaldi¹ ¹VGG, University of Oxford, ²University of Edinburgh * equal contribution

arxiv.org/abs/1806.07823