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Complex Gated Recurrent Neural networks

Motivation

m RNN and neural networks in general suffer from unstable
gradients.

m Distribution over a sum using gating is one fix for vanishing
gradients (GRU, LSTM, ...)

m Norm preserving matrices are another way to fix this.
IWh2 = ||Al]2

m Orthogonal (real) and unitary (complex) matrices are norm
preserving.
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Motivation

m Unitary matrices are more expressive than orthogonal ones.

m Complex networks must be interoperable with real
components.

m Mappings from C to R are not complex differentiable.
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Wirtinger-Calculus [Wir27][MG09][KD09]

For a complex function f(z) = u(x,y) — iv(x,y) we have:

oeooa OF _1l.of .of
R-derivative = az\zzconst = 2(({)X 8y)’ (1)
Gderive & 1,0 o
R-derivative = 5 | z=const = 2(8X + IE)y)' (2)

Based on these derivatives, one can define the chain rule for a
function g(f(z)) as follows:

Og(f(z)) _0gof  ogof

5, =592 T 5792 where?:U(X,Y)_iV(X7}/)~ 3)
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Unitary Evolution matrix RNN-Motivation [ASB16][Pas13]

Xt = Wrecf(xtfl) + Winut +b. (4)

Z (5)
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Stiefel Manifold Weight Updates [WPH™16]

Ao A
Wi = (14 JAx) = SAIW, (8)
where A =WV,F —W'V,F. (9)
Y(0, 00) y
(c0,0) 1,0)
X X

Figure: Fix the optimized matrix eigenvalues onto the unit circle. The key
idea behind stiefel-manifold optimization.
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Unitary evolution network performance

Xt = Urecf(xtf]_) + Winut + b. (10)
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Figure: Current state of the art performance on memory and adding
problem for T=250. Models have approximately 40k weights.
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Complex equivalents of tanh and Relu

fitirose(2) = tanh (' |) : — tanh ('Z’) |§| (11)
o (2

We will compare their performance as state-to-state non-linearities.

frodrel U (2) = ReLU(|z| + b)e™"% = ReLU(|2| + b) =
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Complex gated Recurrent Recurrent Nets

Gate equation:

gr = f:g(zf)v where z, =W,h+V,x; +b,, (13)
g, = fp(z,), where z, = W,h+V_x; +b,, (14)

Update equations:

it = W(gr ® htf]_) + th + b, (15)
h: =g, ©f(z:)+ (1 -g2) ©hey, (16)

C — R, mapping:

0, = W [R(h) S(h)] + bo. (17)
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Complex gate activations

fProd(Z) = U(%(Z)) ’ U(C\\S(z))’ (18)
f gate hirose = tanh(— 12 )U(aﬂ + b), (19)
f mod sigmoid(2) = o(af(z) + f3(2)). (20)

With a € [0,1] and 8 = (1 — «).
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Comparison to state of the art
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Figure: Comparison of our complex gated RNN (cgRNN, blue, n,=280)
with the unitary RNN [ASB16](uRNN, orange, n,=140) and standard
GRU [CvMGT14](orange, n,=112) on the memory (left) and adding
(right) problem for T =250.
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Stiefel optimization and activations
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adding problem
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Figure: Comparison of non-linearities and norm preserving state transition
matrices on the complex gated RNNs for the memory (a) and adding (b)
problems for T=250. We use n, = 80 for all experiments.
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Motion prediction

euler error walking

euler error walking

seed cgRNN-error | GRU-error
0080 1.13 1.24
0160 1.14 1.30
0320 1.19 1.31
0400 1.17 1.34
0560 1.23 1.39
1000 1.39 1.51
average 1.21 1.35
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updates

Figure: Motion prediction Euler angle errors for the complex gated RNN
(green) versus GRU (blue), where each line indicates a separate test
sequence. The final error after 20,000 iterations is shown in the adjacent

table.
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Gates must be able to saturate to work!

In order to further stabilize the gradients we explored normalizing
the recurrent matrices in the gate equations

adding problem T=100

memory problem T—100
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Figure: Orthogonal recurrent gate matrices prevent the gates from
functioning.
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Future Work

m Complex gate coupling. Just one complex gate equation,
r=o0(R(g)), z=0(3(g)). Reduces complex overhead.

m Explore frequency domain networks using Hilbert or Fourier
transformed input data.

m Explore dynamic mode decomposition as an alternative
complex input representation.
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Feedback

Thanks for your attention and feedback.
Later: wolter@cs.uni-bonn.de
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